Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Top class images help ESA’s Rosetta prepare to ride on a cosmic bullet

26.02.2002


Rosetta’s goal is to unravel the origins of the Solar System


Comet Wirtanen as seen by the VLT


Chase a fast-moving comet, land on it and ’ride’ it while it speeds up towards the Sun: not the script of a science-fiction movie, but the very real task of ESA’s Rosetta spacecraft.

New observations with the European Southern Observatory’s (ESO) Very Large Telescope (VLT) provide vital information about Comet Wirtanen - Rosetta’s target - to help ESA reduce uncertainties in the mission, one of the most difficult ever to be performed.

Every 5.5 years Comet Wirtanen completes an orbit around the Sun. Wirtanen has been seen during almost all its apparitions ever since its discovery in 1948, but only recently have astronomers obtained detailed observations that have allowed them to estimate the comet’s size and behaviour. The most recent of these observations was performed in December 2001 with the Very Large Telescope (VLT), located at the Paranal Observatory (Chile). As a result of these observations ESA will be able to refine plans for its Rosetta mission.


Rosetta will be launched next year and it will reach Comet Wirtanen in 2011. By that time the comet will be as far from the Sun as Jupiter, charging headlong towards the inner Solar System at speeds of up to 135,000 km/h. To get there and to be able to match the comet’s orbit, Rosetta will need to be accelerated by several planetary swing-bys, after which the spacecraft - following a series of difficult manoeuvres - will get close to the comet, enter into orbit around it and release a lander from a height of about 1 km.

The VLT observations were planned specifically to investigate the activity of Wirtanen at the time of the landing manoeuvres. These observations have confirmed that - at the same distance from the Sun at which the landing will take place (450 million km) - the activity on Wirtanen is very low. This is very good news for the mission, because it means that there will not be so much dust ejected as to make the landing dramatically difficult.

Comets are basically small frozen bodies made of ice and dust. When they get close to the Sun the heat causes ices on the comet’s surface to "evaporate", and gas and dust grains are ejected into the surrounding space forming the comet’s atmosphere (coma) and the tail. In addition to dropping a lander on the comet’s nucleus for detailed in-situ observations, Rosetta’s task is to investigate the evolution of the comet on its way to the Sun: in fact, Rosetta will keep orbiting around Wirtanen up to the end of the mission in July 2013, at which time the comet is at its closest approach to the Sun, at about 160 million km from it.

VLT observations have also provided Rosetta mission planners with an accurate measurement of their target’s size: Wirtanen is only 1.2 km in diameter, a true cosmic bullet.
"Rosetta is certainly a very challenging space mission. No one has ever tried to land on a comet before," says Gerhard Schwehm, Rosetta’s Project Scientist. "We need to learn as much as possible about our target. The new data will allow us to improve our models and make decisions once we get there."

Franco Bonacina | ESA
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>