Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Top class images help ESA’s Rosetta prepare to ride on a cosmic bullet

26.02.2002


Rosetta’s goal is to unravel the origins of the Solar System


Comet Wirtanen as seen by the VLT


Chase a fast-moving comet, land on it and ’ride’ it while it speeds up towards the Sun: not the script of a science-fiction movie, but the very real task of ESA’s Rosetta spacecraft.

New observations with the European Southern Observatory’s (ESO) Very Large Telescope (VLT) provide vital information about Comet Wirtanen - Rosetta’s target - to help ESA reduce uncertainties in the mission, one of the most difficult ever to be performed.

Every 5.5 years Comet Wirtanen completes an orbit around the Sun. Wirtanen has been seen during almost all its apparitions ever since its discovery in 1948, but only recently have astronomers obtained detailed observations that have allowed them to estimate the comet’s size and behaviour. The most recent of these observations was performed in December 2001 with the Very Large Telescope (VLT), located at the Paranal Observatory (Chile). As a result of these observations ESA will be able to refine plans for its Rosetta mission.


Rosetta will be launched next year and it will reach Comet Wirtanen in 2011. By that time the comet will be as far from the Sun as Jupiter, charging headlong towards the inner Solar System at speeds of up to 135,000 km/h. To get there and to be able to match the comet’s orbit, Rosetta will need to be accelerated by several planetary swing-bys, after which the spacecraft - following a series of difficult manoeuvres - will get close to the comet, enter into orbit around it and release a lander from a height of about 1 km.

The VLT observations were planned specifically to investigate the activity of Wirtanen at the time of the landing manoeuvres. These observations have confirmed that - at the same distance from the Sun at which the landing will take place (450 million km) - the activity on Wirtanen is very low. This is very good news for the mission, because it means that there will not be so much dust ejected as to make the landing dramatically difficult.

Comets are basically small frozen bodies made of ice and dust. When they get close to the Sun the heat causes ices on the comet’s surface to "evaporate", and gas and dust grains are ejected into the surrounding space forming the comet’s atmosphere (coma) and the tail. In addition to dropping a lander on the comet’s nucleus for detailed in-situ observations, Rosetta’s task is to investigate the evolution of the comet on its way to the Sun: in fact, Rosetta will keep orbiting around Wirtanen up to the end of the mission in July 2013, at which time the comet is at its closest approach to the Sun, at about 160 million km from it.

VLT observations have also provided Rosetta mission planners with an accurate measurement of their target’s size: Wirtanen is only 1.2 km in diameter, a true cosmic bullet.
"Rosetta is certainly a very challenging space mission. No one has ever tried to land on a comet before," says Gerhard Schwehm, Rosetta’s Project Scientist. "We need to learn as much as possible about our target. The new data will allow us to improve our models and make decisions once we get there."

Franco Bonacina | ESA
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>