Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A jet of molecular hydrogen arising from a forming high-mass star

07.03.2007
A team of European astronomers offer new evidence that high-mass stars could form in a similar way to low-mass stars, that is, from accretion of gas and dust through a disk surrounding the forming star.

Their article, published in Astronomy & Astrophysics, reports the discovery of a jet of molecular hydrogen arising from a forming high-mass star located in the Omega nebula (M17). This detection confirms the hypothesis based on their earlier discovery that this forming high-mass star is surrounded by a large accretion disk.

While astronomers now understand the overall process of low-mass star formation very well, the formation process of massive stars is still very much under debate. Recent astronomical observations suggest that high-mass stars [1] could form through accretion processes, just like low-mass stars do. For instance, in 2004, European astronomers discovered a large accretion disk that probably surrounds a forming high-mass star, in the star-forming region M17, also known as the Omega nebula and located at a distance of about 7000 light years [2].

Looking again at M17 with the new spectrograph SINFONI [3] at the ESO-VLT, the same European group [4] report discovering a jet of molecular hydrogen (H2) that apparently arises from the forming high-mass star. The picture below illustrates this discovery, which is being published in Astronomy & Astrophysics.

The ejection of material through a jet or an outflow is always linked to accretion of gas and dust, either onto the circumstellar disk or onto the central protostar. The detection of the H2 jet thus provides evidence that ongoing accretion processes occur in the M17 disk. The team also estimates the mass outflow and mass accretion rates, which suggest that a star of high mass is forming within the M17 disk. This is an additional clue that high-mass stars form in a similar way to lower mass stars.

[1]A high-mass star is a star of more than 8 times the solar mass.

[2] For information about this earlier discovery, see the ESO press release and the article published in the ESO Messenger.

[3] SINFONI (for "Spectrograph for INtegral Field Observation in the Near-Infrared") is one of the most recent instruments installed at the ESO-VLT. Associated to an adaptive optics module, it provides very high-angular resolution spectra and images. Technical details and first results can be found on the ESO web site.

[4] The team includes D.E.A. Nürnberger (ESO), R. Chini (Ruhr-Universität Bochum, Germany), F. Eisenhauer (MPE, Garching, Germany), M. Kissler-Patig, A. Modigliani, R. Siebenmorgen, M.F. Sterzik, T. Szeifert (ESO). Full article available at: http://www.aanda.org/index.php?option=com_content&task=view&id=218&Itemid=42&lang=en

Jennifer Martin | alfa
Further information:
http://www.obspm.fr
http://www.aanda.org/index.php?option=com_content&task=view&id=218&Itemid=42&lang=en

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>