Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A jet of molecular hydrogen arising from a forming high-mass star

07.03.2007
A team of European astronomers offer new evidence that high-mass stars could form in a similar way to low-mass stars, that is, from accretion of gas and dust through a disk surrounding the forming star.

Their article, published in Astronomy & Astrophysics, reports the discovery of a jet of molecular hydrogen arising from a forming high-mass star located in the Omega nebula (M17). This detection confirms the hypothesis based on their earlier discovery that this forming high-mass star is surrounded by a large accretion disk.

While astronomers now understand the overall process of low-mass star formation very well, the formation process of massive stars is still very much under debate. Recent astronomical observations suggest that high-mass stars [1] could form through accretion processes, just like low-mass stars do. For instance, in 2004, European astronomers discovered a large accretion disk that probably surrounds a forming high-mass star, in the star-forming region M17, also known as the Omega nebula and located at a distance of about 7000 light years [2].

Looking again at M17 with the new spectrograph SINFONI [3] at the ESO-VLT, the same European group [4] report discovering a jet of molecular hydrogen (H2) that apparently arises from the forming high-mass star. The picture below illustrates this discovery, which is being published in Astronomy & Astrophysics.

The ejection of material through a jet or an outflow is always linked to accretion of gas and dust, either onto the circumstellar disk or onto the central protostar. The detection of the H2 jet thus provides evidence that ongoing accretion processes occur in the M17 disk. The team also estimates the mass outflow and mass accretion rates, which suggest that a star of high mass is forming within the M17 disk. This is an additional clue that high-mass stars form in a similar way to lower mass stars.

[1]A high-mass star is a star of more than 8 times the solar mass.

[2] For information about this earlier discovery, see the ESO press release and the article published in the ESO Messenger.

[3] SINFONI (for "Spectrograph for INtegral Field Observation in the Near-Infrared") is one of the most recent instruments installed at the ESO-VLT. Associated to an adaptive optics module, it provides very high-angular resolution spectra and images. Technical details and first results can be found on the ESO web site.

[4] The team includes D.E.A. Nürnberger (ESO), R. Chini (Ruhr-Universität Bochum, Germany), F. Eisenhauer (MPE, Garching, Germany), M. Kissler-Patig, A. Modigliani, R. Siebenmorgen, M.F. Sterzik, T. Szeifert (ESO). Full article available at: http://www.aanda.org/index.php?option=com_content&task=view&id=218&Itemid=42&lang=en

Jennifer Martin | alfa
Further information:
http://www.obspm.fr
http://www.aanda.org/index.php?option=com_content&task=view&id=218&Itemid=42&lang=en

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>