Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusion conditions - Particle simulation studies of divertor plasmas

25.02.2002


"Nuclear fusion" is the melting of light nuclei into heavier ones, a process that according to the laws of physics releases enormous amounts of energy. For the past 50 years many scientists have sought ways of harnessing this fusion reaction under controlled reactor conditions as a safe, clean and practically inexhaustible source of energy. Siegbert Kuhn and his team at the Institute of Theoretical Physics at Innsbruck University are making a major contribution to these efforts and positioning Austrian nuclear fusion research at the forefront of international activities in this field by carrying out particle simulation studies of divertor plasmas sponsored by the Austrian Science Fund (FWF) and in cooperation with international research groups.



In order to obtain an adequate number of nuclear fusion reactions for practical energy production, the particles involved must be made to collide with sufficient frequency and sufficient energy. In principle, this can be most readily achieved in an extremely hot hydrogen gas (approx. 100 million degrees) at appropriate density. At these temperatures the gas is fully "ionised", meaning that the gas molecules, which are electrically neutral under normal conditions, are split into positively charged nuclei ("ions") and negatively charged "electrons". "Such a gas is called a `plasma` and the plasma state is commonly referred to as the `fourth state of matter`", Kuhn goes on explaining that plasma is the stuff that stars are made of: "Only imagine it: 99.99 % of all matter in the universe is in the plasma state!". Hot plasma is confined in a ring-shaped vessel (torus) by a magnetic field of suitable structure. The most promising configuration to date is termed "tokamak". The next ambitious aim of international fusion research is the construction of the "International Thermonuclear Experimental Reactor (ITER)", which will be the first reactor to work with a plasma largely heated by the fusion reaction itself and which will come very close to the concept of a future commercial fusion reactor in terms of plasma physics.

In a tokamak a distinction is made between the hot "core plasma", in which the energy-producing nuclear fusion reactions take place, and the cooler "edge plasma" through which the high-energy plasma particles diffusing from the core plasma are passed to the baffle plates of the divertor. "Since there are strict technical limits to the amounts of energy to which divertor plates can be subjected, questions relating to the contact between the plasma and the divertor wall count among the most important scientific and technical challenges of modern fusion research", explains Kuhn. He has obtained important results for a better understanding of the divertor plasma in his project. Existing models and simulation programmes, for example, have been greatly improved and the strong influence of secondary and fast electrons on the edge layer was clearly shown and quantified. Kuhn: "We were also able to make a major contribution to understanding the forming and effects of fast particles which occur during the heating of the tokamak plasma through wave injection and which can seriously damage the divertor plates. In a next step, our results can be directly used for modelling and optimising existing and planned tokamaks."

Monika Scheifinger | alphagalileo

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>