Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusion conditions - Particle simulation studies of divertor plasmas

25.02.2002


"Nuclear fusion" is the melting of light nuclei into heavier ones, a process that according to the laws of physics releases enormous amounts of energy. For the past 50 years many scientists have sought ways of harnessing this fusion reaction under controlled reactor conditions as a safe, clean and practically inexhaustible source of energy. Siegbert Kuhn and his team at the Institute of Theoretical Physics at Innsbruck University are making a major contribution to these efforts and positioning Austrian nuclear fusion research at the forefront of international activities in this field by carrying out particle simulation studies of divertor plasmas sponsored by the Austrian Science Fund (FWF) and in cooperation with international research groups.



In order to obtain an adequate number of nuclear fusion reactions for practical energy production, the particles involved must be made to collide with sufficient frequency and sufficient energy. In principle, this can be most readily achieved in an extremely hot hydrogen gas (approx. 100 million degrees) at appropriate density. At these temperatures the gas is fully "ionised", meaning that the gas molecules, which are electrically neutral under normal conditions, are split into positively charged nuclei ("ions") and negatively charged "electrons". "Such a gas is called a `plasma` and the plasma state is commonly referred to as the `fourth state of matter`", Kuhn goes on explaining that plasma is the stuff that stars are made of: "Only imagine it: 99.99 % of all matter in the universe is in the plasma state!". Hot plasma is confined in a ring-shaped vessel (torus) by a magnetic field of suitable structure. The most promising configuration to date is termed "tokamak". The next ambitious aim of international fusion research is the construction of the "International Thermonuclear Experimental Reactor (ITER)", which will be the first reactor to work with a plasma largely heated by the fusion reaction itself and which will come very close to the concept of a future commercial fusion reactor in terms of plasma physics.

In a tokamak a distinction is made between the hot "core plasma", in which the energy-producing nuclear fusion reactions take place, and the cooler "edge plasma" through which the high-energy plasma particles diffusing from the core plasma are passed to the baffle plates of the divertor. "Since there are strict technical limits to the amounts of energy to which divertor plates can be subjected, questions relating to the contact between the plasma and the divertor wall count among the most important scientific and technical challenges of modern fusion research", explains Kuhn. He has obtained important results for a better understanding of the divertor plasma in his project. Existing models and simulation programmes, for example, have been greatly improved and the strong influence of secondary and fast electrons on the edge layer was clearly shown and quantified. Kuhn: "We were also able to make a major contribution to understanding the forming and effects of fast particles which occur during the heating of the tokamak plasma through wave injection and which can seriously damage the divertor plates. In a next step, our results can be directly used for modelling and optimising existing and planned tokamaks."

Monika Scheifinger | alphagalileo

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>