Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pluto-Bound New Horizons Spacecraft Gets a Boost from Jupiter

02.03.2007
NASA’s New Horizons spacecraft successfully completed a flyby of Jupiter early this morning, using the massive planet’s gravity to pick up speed on its 3-billion mile voyage to Pluto and the unexplored Kuiper Belt region beyond.

“We’re on our way to Pluto,” says New Horizons Mission Operations Manager Alice Bowman, of the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md. “The swingby was a success; the spacecraft is on course and performed just as we expected.”

New Horizons came within 1.4 million miles (2.3 million kilometers) of Jupiter at 12:43 a.m. EST, threading an “aim point” that puts it on target to reach the Pluto system in July 2015. During closest approach the spacecraft was out of touch with Earth – busily gathering science data on the giant planet, its moons and atmosphere – but by 11:55 a.m. EST mission operators at APL had established contact with New Horizons through NASA’s Deep Space Network and confirmed its health and status.

The fastest spacecraft ever launched, New Horizons is gaining nearly 9,000 miles per hour (14,000 kilometers per hour) from Jupiter’s gravity – half the speed of a space shuttle in orbit – accelerating past 52,000 mph (83,600 km/h) away from the Sun. New Horizons has covered approximately 500 million miles (800 million kilometers) since launch in January 2006, and reached Jupiter quicker than the seven previous spacecraft to visit the solar system’s largest planet. Today it raced through an aim point just 500 miles (800 kilometers) across – the equivalent of a skeet shooter in Washington hitting a target in Baltimore on the first try.

New Horizons has been running through an intense six-month systems check that will include more than 700 science observations of the Jupiter system by the end of June. More than half of those observations are taking place this week, including scans of Jupiter’s turbulent atmosphere, measurements of its magnetic cocoon (called the magnetosphere), surveys of its delicate rings, maps of the composition and topography of the large moons Io, Europa, Ganymede and Callisto, and a detailed look at volcanic activity on Io. While much of the close-in science data will be sent back to Earth during the coming weeks, the team will download a sampling of images this week to verify New Horizons’ performance.

The outbound leg of New Horizons’ journey includes the first-ever trip down the long "tail" of Jupiter's magnetosphere, a wide stream of charged particles that extends more than 100 million miles beyond the planet. And telescopes on and above Earth – from amateur astronomers’ backyard telescopes, to the giant Keck telescope in Hawaii, to the Hubble Space Telescope, Chandra X-Ray Observatory and others – are turning to Jupiter as New Horizons flies by, ready to provide global context to the close-up data New Horizons gathers.

“We designed the entire Jupiter encounter to be a tough test for the mission team and our spacecraft, and we’re passing the test,” says New Horizons Principal Investigator Alan Stern, from the Southwest Research Institute in Boulder, Colo. “We’re not only learning what we can expect from the spacecraft when we visit Pluto in eight years, we’re already getting some stunning science results at Jupiter – and there’s more to come.”

For the latest news and images, visit http://pluto.jhuapl.edu or www.nasa.gov/newhorizons/.

New Horizons is the first mission in NASA’s New Frontiers Program of medium-class spacecraft exploration projects. Stern leads the mission and science team as principal investigator; APL manages the mission for NASA’s Science Mission Directorate, and designed, built and operates the spacecraft. The mission team also includes KinetX Inc. (navigation support), Ball Aerospace Corporation, the Boeing Company, NASA Goddard Space Flight Center, NASA Jet Propulsion Laboratory, Stanford University, Lockheed Martin Corporation, University of Colorado, the U.S. Department of Energy, and a number of other firms, NASA centers, and university partners.

Michael Buckley | EurekAlert!
Further information:
http://pluto.jhuapl.edu
http://www.nasa.gov/newhorizons/
http://www.jhuapl.edu/newscenter/pressreleases/2007/070228.asp

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>