Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Is the Sagittarius dwarf galaxy a debris of the Large Magellanic Cloud?


The Sagittarius dwarf galaxy is our nearest neighbor. Yet it has been discovered only recently, in 1994, being hidden by the stars and dust in our own Galaxy, the Milky Way. It is however possible today to better know this companion galaxy, thanks to variable stars, the RR Lyrae, in which Sgr-dw is particularly rich. In a recent paper, Patrick Cseresnjes, from Paris Observatory, shows for the first time that Sgr-dw is not typical of other satellites of the Milky Way, but reveals instead striking similarities with the Large Magellanic Cloud. He proposes and argues for the astonishing and original scenario that both systems might share a common progenitor.

The Sagittarius dwarf galaxy (Sgr hereafter) is a most interesting object. Located at only 75 000 light-years from the Sun and 50 000 light-years from the Galactic Center, it is the nearest known satellite of the Milky Way. In spite of this proximity, Sgr has been discovered only in 1994 because it was hidden to us by foreground Galactic stars.

Sgr is now in process of being swallowed by our own Galaxy after complete disruption caused by Galactic tides, showing that at least part of the stellar Halo has formed from accretion of smaller constituents. However, we still lack a clear understanding of this galaxy because the high degree of contamination by foreground Galactic stars and the varying extinction make it almost impossible to get a clean sample of stars. Fortunately, Sgr contains a fair amount of RR Lyrae stars. These variable stars have characteristic light curves and can easily be detected and separated from Galactic stars. Indeed, once their type is identified by their light curve, their absolute luminosity is derived, and the measure of their apparent luminosity gives their distance.

Using two series of photographic plates, taken at La Silla (European Southern Observatory) and digitized by the MAMA (operated at the Centre d’Analyse des Images, Observatoire de Paris), Patrick Cseresnjes and his collaborators detected about 2000 RR Lyrae stars in Sgr spread over 50 square degrees. The spatial distribution of these stars allows to map the northern extension of Sgr, where the Galactic stars outnumber those of Sgr by a factor up to a thousand. Compared to other satellites of the Milky Way, Sgr seems to be much more massive and extended.

Stellar evolution theory indicates that RR Lyraes are more than 10 Gigayears old. A catalogue of such stars offers therefore an unique opportunity to determine the progenitor of Sgr. The most obvious information available is the period which is very accurate and independent of crowding and extinction, allowing robust comparisons between different systems. Patrick Cseresnjes and his collaborators compared the period distribution of RR Lyrae stars in Sgr with those of all other dwarf galaxies with a known RR Lyrae population. The similarity with the Large Magellanic Cloud (LMC) clearly stands out. This similarity is even more striking when one considers that there are no two other couple of distributions showing such a high correlation. Statistical tests show that an identical parent distribution for Sgr and the LMC cannot be ruled out, in spite of the high resolution provided by the large size of the samples in both systems.

The similarity between Sgr and the LMC is not restricted to RR Lyrae stars, but has also been observed through other populations like Carbon stars, in 1998 or Red Giant Branch stars, in 2001. These similarities strongly suggest that both systems have similar stellar populations. So, Sgr could be a debris pulled out of the LMC after a collision and has been injected on its present orbit only recently. Possible configurations are a collision between the LMC and the Galaxy or the Small Magellanic Cloud.

This scenario, though attractive, raises many questions which need to be addressed. When did the collision occur? What happened to the gas? How can the present orbital planes of Sgr and the LMC seem to be perpendicular to each other? Future numerical simulations will assess the feasibility of this scenario.

Patrick Cseresnjes | alphagalileo

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>