Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the Sagittarius dwarf galaxy a debris of the Large Magellanic Cloud?

25.02.2002


The Sagittarius dwarf galaxy is our nearest neighbor. Yet it has been discovered only recently, in 1994, being hidden by the stars and dust in our own Galaxy, the Milky Way. It is however possible today to better know this companion galaxy, thanks to variable stars, the RR Lyrae, in which Sgr-dw is particularly rich. In a recent paper, Patrick Cseresnjes, from Paris Observatory, shows for the first time that Sgr-dw is not typical of other satellites of the Milky Way, but reveals instead striking similarities with the Large Magellanic Cloud. He proposes and argues for the astonishing and original scenario that both systems might share a common progenitor.



The Sagittarius dwarf galaxy (Sgr hereafter) is a most interesting object. Located at only 75 000 light-years from the Sun and 50 000 light-years from the Galactic Center, it is the nearest known satellite of the Milky Way. In spite of this proximity, Sgr has been discovered only in 1994 because it was hidden to us by foreground Galactic stars.

Sgr is now in process of being swallowed by our own Galaxy after complete disruption caused by Galactic tides, showing that at least part of the stellar Halo has formed from accretion of smaller constituents. However, we still lack a clear understanding of this galaxy because the high degree of contamination by foreground Galactic stars and the varying extinction make it almost impossible to get a clean sample of stars. Fortunately, Sgr contains a fair amount of RR Lyrae stars. These variable stars have characteristic light curves and can easily be detected and separated from Galactic stars. Indeed, once their type is identified by their light curve, their absolute luminosity is derived, and the measure of their apparent luminosity gives their distance.


Using two series of photographic plates, taken at La Silla (European Southern Observatory) and digitized by the MAMA (operated at the Centre d’Analyse des Images, Observatoire de Paris), Patrick Cseresnjes and his collaborators detected about 2000 RR Lyrae stars in Sgr spread over 50 square degrees. The spatial distribution of these stars allows to map the northern extension of Sgr, where the Galactic stars outnumber those of Sgr by a factor up to a thousand. Compared to other satellites of the Milky Way, Sgr seems to be much more massive and extended.

Stellar evolution theory indicates that RR Lyraes are more than 10 Gigayears old. A catalogue of such stars offers therefore an unique opportunity to determine the progenitor of Sgr. The most obvious information available is the period which is very accurate and independent of crowding and extinction, allowing robust comparisons between different systems. Patrick Cseresnjes and his collaborators compared the period distribution of RR Lyrae stars in Sgr with those of all other dwarf galaxies with a known RR Lyrae population. The similarity with the Large Magellanic Cloud (LMC) clearly stands out. This similarity is even more striking when one considers that there are no two other couple of distributions showing such a high correlation. Statistical tests show that an identical parent distribution for Sgr and the LMC cannot be ruled out, in spite of the high resolution provided by the large size of the samples in both systems.

The similarity between Sgr and the LMC is not restricted to RR Lyrae stars, but has also been observed through other populations like Carbon stars, in 1998 or Red Giant Branch stars, in 2001. These similarities strongly suggest that both systems have similar stellar populations. So, Sgr could be a debris pulled out of the LMC after a collision and has been injected on its present orbit only recently. Possible configurations are a collision between the LMC and the Galaxy or the Small Magellanic Cloud.

This scenario, though attractive, raises many questions which need to be addressed. When did the collision occur? What happened to the gas? How can the present orbital planes of Sgr and the LMC seem to be perpendicular to each other? Future numerical simulations will assess the feasibility of this scenario.

Patrick Cseresnjes | alphagalileo

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>