Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manchester physicists pioneer new super-thin technology

01.03.2007
Researchers have used the world's thinnest material to create a new type of technology, which could be used to make super-fast electronic components and speed up the development of drugs.

Physicists at The University of Manchester and The Max-Planck Institute in Germany have created a new kind of a membrane that is only one atom thick.

It's believed this super-small structure can be used to sieve gases, make ultra-fast electronic switches and image individual molecules with unprecedented accuracy.

The findings of the research team is published today (Thursday 1 March 2007) in the journal Nature.

Two years ago, scientists discovered a new class of materials that can be viewed as individual atomic planes pulled out of bulk crystals.

These one-atom-thick materials and in particular graphene – a gauze of carbon atoms resembling chicken wire – have rapidly become one of the hottest topics in physics.

However, it has remained doubtful whether such materials can exist in the free state, without being placed on top of other materials.

Now an international research team, led by Dr Jannik Meyer of The Max-Planck Institute in Germany and Professor Andre Geim of The University of Manchester has managed to make free-hanging graphene.

The team used a combination of microfabrication techniques used, for example, in the manufacturing of microprocessors.

A metallic scaffold was placed on top of a sheet of graphene, which was placed on a silicon chip. The chip was then dissolved in acids, leaving the graphene hanging freely in air or a vacuum from the scaffold.

The resulting membranes are the thinnest material possible and maintain a remarkably high quality.

Professor Geim – who works in the School of Physics and Astronomy at The University of Manchester – and his fellow researchers have also found the reason for the stability of such atomically-thin materials, which were previously presumed to be impossible.

They report that graphene is not perfectly flat but instead gently crumpled out of plane, which helps stabilise otherwise intrinsically unstable ultra-thin matter.

Professor Geim and his colleagues believe that the membranes they have created can be used like sieves, to filter light gases through the atomic mesh of the chicken wire structure, or to make miniature electro-mechanical switches.

It's also thought it may be possible to use them as a non-obscuring support for electron microscopy to study individual molecules.

This has significant implications for the development of medical drugs, as it will potentially allow the rapid analysis of the atomic structures of bio-active complex molecules.

"This is a completely new type of technology – even nanotechnology is not the right word to describe these new membranes," said Professor Geim.

"We have made proof-of-concept devices and believe the technology transfer to other areas should be straightforward. However, the real challenge is to make such membranes cheap and readily available for large-scale applications."

Alex Waddington | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>