Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slowly does it as giant magnet goes underground at CERN

01.03.2007
At 5:00 am GMT this morning (28th February 2007) the heaviest piece of the Compact Muon Solenoid (CMS) particle detector began a momentous journey into its experimental cavern, 100 metres underground at CERN, Geneva.

Using a huge gantry crane, custom-built by VSL group, the pre-assembled central piece of the detector, weighing as much as five Jumbo jets (1920 tonnes) is being gently lowered into place. “This is a challenging feat of engineering, as there are just 20 cm of leeway between the detector and the walls of the shaft,” said Austin Ball, Technical Coordinator of CMS. “The detector is supported by four massive cables, each with 55 strands and attached to a step-by-step hydraulic jacking system, with sophisticated monitoring and control to ensure the object does not sway or tilt.” The entire process is expected to take about ten hours to complete.

The first seven of 15 pieces of the CMS detector have already been lowered, with the first piece arriving in the experimental cavern on 30 November 2006. The giant element being lowered today, which is 16 m tall, 17 m wide and 13 m long, marks the halfway point in the lowering process with the last piece scheduled to make its descent in summer 2007.

Professor Keith Mason, CEO of the Particle Physics and Astronomy Council (PPARC), which pays the UK subscription to CERN, said “The lowering of the largest piece of CMS today marks a major engineering milestone towards the switch on of the Large Hadron Collider (LHC) later this year. It is somewhat of a paradox that the largest, heaviest detectors ever built will be used to study the smallest scientific events.”

The construction of CMS is a unique experience for the high-energy physics collaboration, as typically such experiments are built underground – without the need for moving and lowering large pieces. CMS has broken with tradition in order to start assembly before completion of the underground cavern, taking advantage of a spacious surface assembly hall to pre-assemble and pre-test the solenoid magnet and the various detectors used to measure particles resulting from collisions.

CMS is a general purpose experiment being prepared to take data at CERN’s LHC which will be the world's largest and most complex scientific instrument when it switches on in November 2007. UK scientists from the University of Bristol, Imperial College London, Brunel University and the Rutherford Appleton Laboratory are members of CMS collaboration which involves over 2,000 scientists worldwide.

Experiments at the LHC will allow physicists to complete a journey that started with Newton's description of gravity. Gravity acts on mass, but so far science is unable to explain why the fundamental particles have the masses they have. Experiments such as CMS may provide the answer. LHC experiments will also probe the mysterious missing mass and dark energy of the universe – visible matter seems to account for just 4% of what must exist. They will investigate the reason for nature's preference for matter over antimatter, and will probe matter as it existed at the very beginning of time.

“This is a very exciting time for physics,” said CMS spokesman Jim Virdee from Imperial College London, “the LHC is poised to take us to a new level of understanding of our Universe.”

Dr Helen Heath, a CMS collaboration member from the University of Bristol said, “This is a very exciting time as the experiment many of us have worked on for over 10 years begins to come together."

Gill Ormrod | alfa
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>