Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slowly does it as giant magnet goes underground at CERN

01.03.2007
At 5:00 am GMT this morning (28th February 2007) the heaviest piece of the Compact Muon Solenoid (CMS) particle detector began a momentous journey into its experimental cavern, 100 metres underground at CERN, Geneva.

Using a huge gantry crane, custom-built by VSL group, the pre-assembled central piece of the detector, weighing as much as five Jumbo jets (1920 tonnes) is being gently lowered into place. “This is a challenging feat of engineering, as there are just 20 cm of leeway between the detector and the walls of the shaft,” said Austin Ball, Technical Coordinator of CMS. “The detector is supported by four massive cables, each with 55 strands and attached to a step-by-step hydraulic jacking system, with sophisticated monitoring and control to ensure the object does not sway or tilt.” The entire process is expected to take about ten hours to complete.

The first seven of 15 pieces of the CMS detector have already been lowered, with the first piece arriving in the experimental cavern on 30 November 2006. The giant element being lowered today, which is 16 m tall, 17 m wide and 13 m long, marks the halfway point in the lowering process with the last piece scheduled to make its descent in summer 2007.

Professor Keith Mason, CEO of the Particle Physics and Astronomy Council (PPARC), which pays the UK subscription to CERN, said “The lowering of the largest piece of CMS today marks a major engineering milestone towards the switch on of the Large Hadron Collider (LHC) later this year. It is somewhat of a paradox that the largest, heaviest detectors ever built will be used to study the smallest scientific events.”

The construction of CMS is a unique experience for the high-energy physics collaboration, as typically such experiments are built underground – without the need for moving and lowering large pieces. CMS has broken with tradition in order to start assembly before completion of the underground cavern, taking advantage of a spacious surface assembly hall to pre-assemble and pre-test the solenoid magnet and the various detectors used to measure particles resulting from collisions.

CMS is a general purpose experiment being prepared to take data at CERN’s LHC which will be the world's largest and most complex scientific instrument when it switches on in November 2007. UK scientists from the University of Bristol, Imperial College London, Brunel University and the Rutherford Appleton Laboratory are members of CMS collaboration which involves over 2,000 scientists worldwide.

Experiments at the LHC will allow physicists to complete a journey that started with Newton's description of gravity. Gravity acts on mass, but so far science is unable to explain why the fundamental particles have the masses they have. Experiments such as CMS may provide the answer. LHC experiments will also probe the mysterious missing mass and dark energy of the universe – visible matter seems to account for just 4% of what must exist. They will investigate the reason for nature's preference for matter over antimatter, and will probe matter as it existed at the very beginning of time.

“This is a very exciting time for physics,” said CMS spokesman Jim Virdee from Imperial College London, “the LHC is poised to take us to a new level of understanding of our Universe.”

Dr Helen Heath, a CMS collaboration member from the University of Bristol said, “This is a very exciting time as the experiment many of us have worked on for over 10 years begins to come together."

Gill Ormrod | alfa
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>