Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New graphene transistor promises life after death of silicon chip

01.03.2007
Researchers have used the world’s thinnest material to create the world’s smallest transistor – a breakthrough that could spark the development of a new type of super-fast computer chip.

Professor Andre Geim and Dr Kostya Novoselov from The School of Physics and Astronomy at The University of Manchester, reveal details of transistors that are only one atom thick and less than 50 atoms wide, in the March issue of Nature Materials.

They believe this innovation will allow the rapid miniaturisation of electronics to continue when the current silicon-based technology runs out of steam.

In recent decades, manufacturers have crammed more and more components onto integrated circuits. As a result, the number of transistors and the power of these circuits has roughly doubled every two years. This has become known as Moore’s Law.

But the speed of cramming is now noticeably decreasing, and further miniaturisation of electronics is to experience its most fundamental challenge in the next ten to 20 years, according to the semiconductor industry roadmap.

Two years ago, Professor Andre Geim and his colleagues discovered a new class of materials that can be viewed as individual atomic planes pulled out of bulk crystals.

These one-atom-thick materials and particularly graphene – a gauze of carbon atoms resembling a chicken wire – have rapidly become one of the hottest topics in physics.

The first graphene-based transistor was reported by The University of Manchester team at the same time as the discovery of graphene, and other groups have recently reproduced the result (1).

But these graphene transistors were very ‘leaky’ (2), which has limited possible applications and ruled out important ones, such as their use in computer chips and other electronic circuits with a high density of transistors.

Now the Manchester team has found an elegant way around the problem and made graphene-based transistors suitable for use in future computer chips.

Professor Geim and colleagues have shown for the first time that graphene remains highly stable and conductive even when it is cut into strips of only a few nanometres (3) wide.

All other known materials – including silicon – oxidise, decompose and become unstable at sizes tens times larger.

This poor stability of these materials has been the fundamental barrier to their use in future electronic devices – and this has threatened to limit the future development of microelectronics.

"We have made ribbons only a few nanometres wide and cannot rule out the possibility of confining graphene even further – down to maybe a single ring of carbon atoms," says Professor Geim.

The research team suggests that future electronic circuits can be carved out of a single graphene sheet. Such circuits would include the central element or ‘quantum dot’, semitransparent barriers to control movements of individual electrons, interconnects and logic gates – all made entirely of graphene.

Geim’s team have proved this idea by making a number of single-electron-transistor devices that work under ambient conditions and show a high-quality transistor action.

"At the present time no technology can cut individual elements with nanometre precision. We have to rely on chance by narrowing our ribbons to a few nanometres in width,” says Dr Leonid Ponomarenko, who is leading this research at The University of Manchester. “Some of them were too wide and did not work properly whereas others were over-cut and broken."

But Dr Ponomarenko is optimistic that this proof-of-concept technique can be scaled up.

"To make transistors at the true-nanometre scale is exactly the same challenge that modern silicon-based technology is facing now. The technology has managed to progress steadily from millimetre-sized transistors to current microprocessors with individual elements down to tens nanometres in size.

“The next logical step is true nanometre-sized circuits and this is where graphene can come into play because it remains stable – unlike silicon or other materials – even at these dimensions.”

Professor Geim does not expect that graphene-based circuits will come of age before 2025. Until then, silicon technology should remain dominant.

But he believes graphene is probably the only viable approach after the silicon era comes to an end.

“This material combines many enticing features from other technologies that have been considered as alternatives to the silicon-based technology.

“Graphene combines most exciting features from carbon-nanotube, single-electron and molecular electronics, all in one.”

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>