Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New graphene transistor promises life after death of silicon chip

01.03.2007
Researchers have used the world’s thinnest material to create the world’s smallest transistor – a breakthrough that could spark the development of a new type of super-fast computer chip.

Professor Andre Geim and Dr Kostya Novoselov from The School of Physics and Astronomy at The University of Manchester, reveal details of transistors that are only one atom thick and less than 50 atoms wide, in the March issue of Nature Materials.

They believe this innovation will allow the rapid miniaturisation of electronics to continue when the current silicon-based technology runs out of steam.

In recent decades, manufacturers have crammed more and more components onto integrated circuits. As a result, the number of transistors and the power of these circuits has roughly doubled every two years. This has become known as Moore’s Law.

But the speed of cramming is now noticeably decreasing, and further miniaturisation of electronics is to experience its most fundamental challenge in the next ten to 20 years, according to the semiconductor industry roadmap.

Two years ago, Professor Andre Geim and his colleagues discovered a new class of materials that can be viewed as individual atomic planes pulled out of bulk crystals.

These one-atom-thick materials and particularly graphene – a gauze of carbon atoms resembling a chicken wire – have rapidly become one of the hottest topics in physics.

The first graphene-based transistor was reported by The University of Manchester team at the same time as the discovery of graphene, and other groups have recently reproduced the result (1).

But these graphene transistors were very ‘leaky’ (2), which has limited possible applications and ruled out important ones, such as their use in computer chips and other electronic circuits with a high density of transistors.

Now the Manchester team has found an elegant way around the problem and made graphene-based transistors suitable for use in future computer chips.

Professor Geim and colleagues have shown for the first time that graphene remains highly stable and conductive even when it is cut into strips of only a few nanometres (3) wide.

All other known materials – including silicon – oxidise, decompose and become unstable at sizes tens times larger.

This poor stability of these materials has been the fundamental barrier to their use in future electronic devices – and this has threatened to limit the future development of microelectronics.

"We have made ribbons only a few nanometres wide and cannot rule out the possibility of confining graphene even further – down to maybe a single ring of carbon atoms," says Professor Geim.

The research team suggests that future electronic circuits can be carved out of a single graphene sheet. Such circuits would include the central element or ‘quantum dot’, semitransparent barriers to control movements of individual electrons, interconnects and logic gates – all made entirely of graphene.

Geim’s team have proved this idea by making a number of single-electron-transistor devices that work under ambient conditions and show a high-quality transistor action.

"At the present time no technology can cut individual elements with nanometre precision. We have to rely on chance by narrowing our ribbons to a few nanometres in width,” says Dr Leonid Ponomarenko, who is leading this research at The University of Manchester. “Some of them were too wide and did not work properly whereas others were over-cut and broken."

But Dr Ponomarenko is optimistic that this proof-of-concept technique can be scaled up.

"To make transistors at the true-nanometre scale is exactly the same challenge that modern silicon-based technology is facing now. The technology has managed to progress steadily from millimetre-sized transistors to current microprocessors with individual elements down to tens nanometres in size.

“The next logical step is true nanometre-sized circuits and this is where graphene can come into play because it remains stable – unlike silicon or other materials – even at these dimensions.”

Professor Geim does not expect that graphene-based circuits will come of age before 2025. Until then, silicon technology should remain dominant.

But he believes graphene is probably the only viable approach after the silicon era comes to an end.

“This material combines many enticing features from other technologies that have been considered as alternatives to the silicon-based technology.

“Graphene combines most exciting features from carbon-nanotube, single-electron and molecular electronics, all in one.”

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>