Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swimming 'to the left' gets bacteria upstream, and may promote infection

28.02.2007
Yale engineers who study both flow hydrodynamics and how bacteria propel themselves report that one reason for the high incidence of infections associated with catheters in hospital patients may be that some pathogenic bacteria swim "to the left," in a study published in Physical Review Letters.

"Escherichia coli (E. coli) and some other pathogenic bacteria with flagella interact with the flow of liquid when they are near a surface," said Hür Köser, assistant professor of electrical engineering at Yale and the study's senior author, who has collaborated with a diverse team of scientists for this study.

"Each cell normally has two to six flagella that can rotate together as a bundle and act as a propeller to drive the cell forward. Away from any boundaries, the cells swim in a straight line, but near a surface, opposing forces of flow and bacterial forward motion cause the bacteria to continuously swim to one side — to the left." The study determined that swimming "to the left" is a hydrodynamic process that is fundamentally related to the way the cells propel themselves in this manner.

Köser and his colleagues show that this phenomenon allows flagellated bacteria, such as E. coli, to find crevices or imperfections on the surface, get trapped, and swim upstream. This allows the bacteria to eventually locate large reservoirs with richer sources of food and better conditions for multiplying.

"We think that upstream swimming of bacteria may be relevant to the transport of E. coli in the urinary tract," said Köser. "It might also explain the high rates of infection in catheterized patients and the incidence of microbial contamination at protected wellheads. To our knowledge, this is the first time that a natural propensity to swim upstream has been discovered and described in bacteria."

To study the hydrodynamics of these bacteria in a flow environment, Köser's team constructed microfluidic devices using soft lithography. Inside the devices they set up various flow patterns to observe the bacteria in channels that were only 150 or 300 microns wide and between 50 and 450 microns deep. They were able to observe how the bacteria moved at a wide range of flow rates — between 0.05 and 20 microliters per minute.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>