Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique by CU-Boulder researchers opens door to tabletop X-ray laser

27.02.2007
A team of researchers at the University of Colorado at Boulder has developed a new technique to generate laser-like X-ray beams, removing a major obstacle in the decades-long quest to build a tabletop X-ray laser that could be used for biological and medical imaging.

For nearly half a century, scientists have been trying to figure out how to build a cost-effective and reasonably sized X-ray laser to provide super-high imaging resolution, according to CU-Boulder physics professors Henry Kapteyn and Margaret Murnane, who led the team at JILA, a joint institute of CU-Boulder and the National Institute of Standards and Technology. Most of today's X-ray lasers require so much power that they rely on fusion laser facilities the size of football stadiums, making their use impractical.

"We've come up with a good end run around the requirement for a monstrous power source," Kapteyn said.

A paper on the subject by Murnane and Kapteyn, CU-Boulder graduate students Xiaoshi Zhang, Amy Lytle, Tenio Popmintchev, Xibin Zhou and Senior Research Associate Oren Cohen of JILA was published in the online version of the journal Nature Physics on Feb. 25.

If they can extend the new technique all the way into the hard X-ray region of the electromagnetic spectrum, which they think is just a matter of time because there are no physical principles blocking the way, the ramifications would be felt in numerous fields.

"If we can do this, it might make it possible to improve X-ray imaging resolution by a thousand times, with impacts in medicine, biology and nanotechnology," Murnane said. "For example, the X-rays we get in the hospital are limited by spatial resolution. They can't detect really small cancers because the X-ray source in your doctor's office is like a light bulb, not like a laser. If you had a bright, laser-like X-ray beam, you could image with far higher resolution."

To generate laser-like X-ray beams, the team used a powerful laser to pluck an electron from an atom of argon, a highly stable chemical element, and then slam it back into the same atom. The boomerang action generates a weak, but directed beam of X-rays.

The obstacle they needed to hurdle was combining different X-ray waves emitted from a large number of atoms to generate an X-ray beam bright enough to be useful, according to Kapteyn. In other words, they needed to generate big enough waves flowing together to make a strong X-ray.

The biggest problem was the waves of X-rays do not all come out "marching in step" because visible laser light and X-ray beams travel at different speeds in the argon gas, Murnane said. This meant that while some X-ray waves combined with other waves from similar regions to become stronger, waves from different regions would cancel each other out, making the X-ray output weaker.

To correct this, the researchers sent some weak pulses of visible laser light into the gas in the opposite direction of the laser beam generating the X-rays. The weak laser beam manipulates the electrons plucked from the argon atoms, whose emissions are out of sync with the main beam, and then slams them back into the atoms to generate X-rays at just the right time, intensifying the strength of the beam by over a hundred times.

"Think of a kid on a swing," Kapteyn said. "If you keep pushing at the right time the swing goes higher and higher, but if you don't push it at the right time, you'll eventually stop it.

"What we found is essentially another beam of light to control exactly when the swing is getting pushed. By putting the light in the right place, we don't allow the swing to be pushed at the wrong time."

Henry Kapteyn | EurekAlert!
Further information:
http://www.colorado.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>