Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique by CU-Boulder researchers opens door to tabletop X-ray laser

27.02.2007
A team of researchers at the University of Colorado at Boulder has developed a new technique to generate laser-like X-ray beams, removing a major obstacle in the decades-long quest to build a tabletop X-ray laser that could be used for biological and medical imaging.

For nearly half a century, scientists have been trying to figure out how to build a cost-effective and reasonably sized X-ray laser to provide super-high imaging resolution, according to CU-Boulder physics professors Henry Kapteyn and Margaret Murnane, who led the team at JILA, a joint institute of CU-Boulder and the National Institute of Standards and Technology. Most of today's X-ray lasers require so much power that they rely on fusion laser facilities the size of football stadiums, making their use impractical.

"We've come up with a good end run around the requirement for a monstrous power source," Kapteyn said.

A paper on the subject by Murnane and Kapteyn, CU-Boulder graduate students Xiaoshi Zhang, Amy Lytle, Tenio Popmintchev, Xibin Zhou and Senior Research Associate Oren Cohen of JILA was published in the online version of the journal Nature Physics on Feb. 25.

If they can extend the new technique all the way into the hard X-ray region of the electromagnetic spectrum, which they think is just a matter of time because there are no physical principles blocking the way, the ramifications would be felt in numerous fields.

"If we can do this, it might make it possible to improve X-ray imaging resolution by a thousand times, with impacts in medicine, biology and nanotechnology," Murnane said. "For example, the X-rays we get in the hospital are limited by spatial resolution. They can't detect really small cancers because the X-ray source in your doctor's office is like a light bulb, not like a laser. If you had a bright, laser-like X-ray beam, you could image with far higher resolution."

To generate laser-like X-ray beams, the team used a powerful laser to pluck an electron from an atom of argon, a highly stable chemical element, and then slam it back into the same atom. The boomerang action generates a weak, but directed beam of X-rays.

The obstacle they needed to hurdle was combining different X-ray waves emitted from a large number of atoms to generate an X-ray beam bright enough to be useful, according to Kapteyn. In other words, they needed to generate big enough waves flowing together to make a strong X-ray.

The biggest problem was the waves of X-rays do not all come out "marching in step" because visible laser light and X-ray beams travel at different speeds in the argon gas, Murnane said. This meant that while some X-ray waves combined with other waves from similar regions to become stronger, waves from different regions would cancel each other out, making the X-ray output weaker.

To correct this, the researchers sent some weak pulses of visible laser light into the gas in the opposite direction of the laser beam generating the X-rays. The weak laser beam manipulates the electrons plucked from the argon atoms, whose emissions are out of sync with the main beam, and then slams them back into the atoms to generate X-rays at just the right time, intensifying the strength of the beam by over a hundred times.

"Think of a kid on a swing," Kapteyn said. "If you keep pushing at the right time the swing goes higher and higher, but if you don't push it at the right time, you'll eventually stop it.

"What we found is essentially another beam of light to control exactly when the swing is getting pushed. By putting the light in the right place, we don't allow the swing to be pushed at the wrong time."

Henry Kapteyn | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>