Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new theory of climate change

27.02.2007
The leader of Sun-climate research at the Danish National Space Center, Henrik Svensmark, puts together the findings reported by him and his colleagues in a dozen scientific papers, to tell how the climate is governed by atomic particles coming from exploded stars.

These cosmic rays help to make ordinary clouds. High levels of cosmic rays and cloudiness cool the world, while milder intervals occur when cosmic rays and cloud cover diminish.


Cosmic radiation entering Earth's atmosphere. Credit: Danish National Space Center

The review paper entitled ‘Cosmoclimatology: a new theory emerges’ appears in the February issue of Astronomy & Geophysics. Here are some of its salient points.

For more than 20 years, satellite records of low-altitude clouds have closely followed variations in cosmic rays. Just how cosmic rays take part in cloud-making appeared in the SKY experiment, conducted in the basement of the Danish National Space Center. Electrons set free in the air by passing cosmic rays help to assemble the building blocks for cloud condensation nuclei on which water vapour condenses to make clouds.

Cosmic ray intensities – and therefore cloudiness – keep changing because the Sun’s magnetic field varies in its ability to repel cosmic rays coming from the Galaxy, before they can reach the Earth. Radioactive carbon-14 and other unusual atoms made in the atmosphere by cosmic rays provide a record of how cosmic-ray intensities have varied in the past. They explain repeated alternations between cold and warm periods during the past 12,000 years. Whenever the Sun was feeble and cosmic-ray intensities were high, cold conditions ensued, most recently in the Little Ace Age that climaxed 300 years ago.

On long timescales the intensity of cosmic rays varies more emphatically because the influx from the Galaxy changes. During the past 500 million years the Earth has passed through four ‘hothouse’ episodes, free of ice and with high sea levels, and four ‘icehouse’ episodes like the one we live in now, with ice-sheets, glaciers and relatively low sea levels.

Nir Shaviv of the Hebrew University in Jerusalem, together with Ján Veizer of the Ruhr University and the University of Ottawa, links these changes to the journey of the Sun and the Earth through the Milky Way Galaxy. They blame the icehouse episodes on encounters with bright spiral arms, where cosmic rays are most intense. More frequent chilling events, every 34 million years or so, occur whenever the solar system passes through with the mid-plane of the Galaxy.

In Snowball Earth episodes around 700 and 2300 million years ago, even the Equator was icy. At those times the birth-rate of stars in the Galaxy was unusually high, which would have also meant a large number of exploding stars and intense cosmic rays. Earlier still, the theory of cosmic rays and clouds helps to explain why the Earth did not freeze solid when it was very young. The Sun was much fainter than it is now, but also more vigorous in repelling cosmic rays, so the Earth would not have had much cloud cover.

While calculating the changing influx since life began about 3.8 billion years ago, Dr Svensmark discovered a surprising connection between cosmic-ray intensities and a variability of the productivity of life. The biggest fluctuations in productivity coincided with high star formation rates and cool periods in the Earth’s climate. Conversely, during a billion years when star formation was slow, cosmic rays were less intense and the Earth’s climate was warmer, the biosphere was almost unchanging in its productivity.

Near the end of his review Dr Svensmark writes: ‘The past 10 years have seen the reconnaissance of a new area of research by a small number of investigators. The multidisciplinary nature of cosmoclimatology is both a challenge and an opportunity for many lines of inquiry.’ Even the search for alien life is affected, because it should now take into account of the need for the right magnetic environment, if life is to originate and survive on the planets of other stars.

Sune Nordentoft Lauritsen | alfa
Further information:
http://www.spacecenter.dk
http://www.spacecenter.dk/research/sun-climate/a-new-theory-of-climate-change

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>