Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new theory of climate change

The leader of Sun-climate research at the Danish National Space Center, Henrik Svensmark, puts together the findings reported by him and his colleagues in a dozen scientific papers, to tell how the climate is governed by atomic particles coming from exploded stars.

These cosmic rays help to make ordinary clouds. High levels of cosmic rays and cloudiness cool the world, while milder intervals occur when cosmic rays and cloud cover diminish.

Cosmic radiation entering Earth's atmosphere. Credit: Danish National Space Center

The review paper entitled ‘Cosmoclimatology: a new theory emerges’ appears in the February issue of Astronomy & Geophysics. Here are some of its salient points.

For more than 20 years, satellite records of low-altitude clouds have closely followed variations in cosmic rays. Just how cosmic rays take part in cloud-making appeared in the SKY experiment, conducted in the basement of the Danish National Space Center. Electrons set free in the air by passing cosmic rays help to assemble the building blocks for cloud condensation nuclei on which water vapour condenses to make clouds.

Cosmic ray intensities – and therefore cloudiness – keep changing because the Sun’s magnetic field varies in its ability to repel cosmic rays coming from the Galaxy, before they can reach the Earth. Radioactive carbon-14 and other unusual atoms made in the atmosphere by cosmic rays provide a record of how cosmic-ray intensities have varied in the past. They explain repeated alternations between cold and warm periods during the past 12,000 years. Whenever the Sun was feeble and cosmic-ray intensities were high, cold conditions ensued, most recently in the Little Ace Age that climaxed 300 years ago.

On long timescales the intensity of cosmic rays varies more emphatically because the influx from the Galaxy changes. During the past 500 million years the Earth has passed through four ‘hothouse’ episodes, free of ice and with high sea levels, and four ‘icehouse’ episodes like the one we live in now, with ice-sheets, glaciers and relatively low sea levels.

Nir Shaviv of the Hebrew University in Jerusalem, together with Ján Veizer of the Ruhr University and the University of Ottawa, links these changes to the journey of the Sun and the Earth through the Milky Way Galaxy. They blame the icehouse episodes on encounters with bright spiral arms, where cosmic rays are most intense. More frequent chilling events, every 34 million years or so, occur whenever the solar system passes through with the mid-plane of the Galaxy.

In Snowball Earth episodes around 700 and 2300 million years ago, even the Equator was icy. At those times the birth-rate of stars in the Galaxy was unusually high, which would have also meant a large number of exploding stars and intense cosmic rays. Earlier still, the theory of cosmic rays and clouds helps to explain why the Earth did not freeze solid when it was very young. The Sun was much fainter than it is now, but also more vigorous in repelling cosmic rays, so the Earth would not have had much cloud cover.

While calculating the changing influx since life began about 3.8 billion years ago, Dr Svensmark discovered a surprising connection between cosmic-ray intensities and a variability of the productivity of life. The biggest fluctuations in productivity coincided with high star formation rates and cool periods in the Earth’s climate. Conversely, during a billion years when star formation was slow, cosmic rays were less intense and the Earth’s climate was warmer, the biosphere was almost unchanging in its productivity.

Near the end of his review Dr Svensmark writes: ‘The past 10 years have seen the reconnaissance of a new area of research by a small number of investigators. The multidisciplinary nature of cosmoclimatology is both a challenge and an opportunity for many lines of inquiry.’ Even the search for alien life is affected, because it should now take into account of the need for the right magnetic environment, if life is to originate and survive on the planets of other stars.

Sune Nordentoft Lauritsen | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>