Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Scientists Detect Spectrum of Planets Orbiting Other Stars

23.02.2007
For the first time, scientists at Goddard have obtained a spectrum, or molecular fingerprint, of a planet orbiting another star. Using spectroscopy, scientists were able to identify silicon dust in clouds on a gas-giant planet called HD 209458b. That planet is located 150 light years from Earth.

"This first-of-its-kind measurement represents a significant advance in the field of extrasolar planetary science," said Jeremy Richardson, NASA Postdoctoral Fellow at NASA's Goddard Space Flight Center, Greenbelt, Md. Richardson and colleagues published their study in the Feb. 22 issue of Nature magazine.

One way in which scientists can study the properties of extrasolar planets is using spectroscopy, which refers to spreading light into its different colors (similar to a prism). For these observations, the team used NASA’s Spitzer Space Telescope, which operates in the infrared.

The team took advantage of the unique geometry of this particular planetary system. It is a so-called "transiting planet," meaning that the planet crosses in front of its star as seen from Earth. By measuring the spectrum of the planet and star together, then subtracting the spectrum of the star alone (when the planet is hidden behind the star), scientists can figure out the spectrum of the planet.

Richardson and his co-authors found that the extrasolar planet's spectrum revealed the "signature" of silicate (an element found on Earth) dust in clouds high in the planet's atmosphere.

Although the scientists saw "spectral signatures" or identifiers that were related to clouds, they were surprised that they didn't see any signatures that showed there was water vapor. On Earth, clouds are composed primarily of water vapor.

Richardson said that planets similar to this one, often called "hot Jupiter" type planets because they are gaseous like Jupiter but very close to their parent stars (even closer than Mercury is to the sun), must contain water vapor.

"Since oxygen and hydrogen are such abundant molecules in the cosmos it is virtually impossible for water (as vapor, or steam) to be absent from the planet, Richardson said. “So. the water vapor must be hidden, probably by the same cloud layer that we detect in the spectrum."

Once more powerful infrared telescopes like the James Webb Space Telescope, slated for launch in 2013, are launched, and as smaller planets are detected, this technique may hold promise for detecting the signatures of life on hot Earth-like planets.

In addition to Richardson's team, two other independent groups also captured spectra of extrasolar planets. See http://www.spitzer.caltech.edu/Media/releases/ssc2007-04/ for details.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2007/cloudy_world.html
http://www.spitzer.caltech.edu/Media/releases/ssc2007-04

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>