Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Scientists Detect Spectrum of Planets Orbiting Other Stars

For the first time, scientists at Goddard have obtained a spectrum, or molecular fingerprint, of a planet orbiting another star. Using spectroscopy, scientists were able to identify silicon dust in clouds on a gas-giant planet called HD 209458b. That planet is located 150 light years from Earth.

"This first-of-its-kind measurement represents a significant advance in the field of extrasolar planetary science," said Jeremy Richardson, NASA Postdoctoral Fellow at NASA's Goddard Space Flight Center, Greenbelt, Md. Richardson and colleagues published their study in the Feb. 22 issue of Nature magazine.

One way in which scientists can study the properties of extrasolar planets is using spectroscopy, which refers to spreading light into its different colors (similar to a prism). For these observations, the team used NASA’s Spitzer Space Telescope, which operates in the infrared.

The team took advantage of the unique geometry of this particular planetary system. It is a so-called "transiting planet," meaning that the planet crosses in front of its star as seen from Earth. By measuring the spectrum of the planet and star together, then subtracting the spectrum of the star alone (when the planet is hidden behind the star), scientists can figure out the spectrum of the planet.

Richardson and his co-authors found that the extrasolar planet's spectrum revealed the "signature" of silicate (an element found on Earth) dust in clouds high in the planet's atmosphere.

Although the scientists saw "spectral signatures" or identifiers that were related to clouds, they were surprised that they didn't see any signatures that showed there was water vapor. On Earth, clouds are composed primarily of water vapor.

Richardson said that planets similar to this one, often called "hot Jupiter" type planets because they are gaseous like Jupiter but very close to their parent stars (even closer than Mercury is to the sun), must contain water vapor.

"Since oxygen and hydrogen are such abundant molecules in the cosmos it is virtually impossible for water (as vapor, or steam) to be absent from the planet, Richardson said. “So. the water vapor must be hidden, probably by the same cloud layer that we detect in the spectrum."

Once more powerful infrared telescopes like the James Webb Space Telescope, slated for launch in 2013, are launched, and as smaller planets are detected, this technique may hold promise for detecting the signatures of life on hot Earth-like planets.

In addition to Richardson's team, two other independent groups also captured spectra of extrasolar planets. See for details.

Rob Gutro | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>