Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artemis starts its journey to final orbit

22.02.2002


Artemis orbit evolution


communicationg with SPOT 4 (artist’s impression)


Thanks to ion propulsion, the Artemis mission is turning near-defeat into a success story. Nominal operations could start this summer, with ESA’s satellite, manufactured by Alenia Spazio as prime contractor (I), playing a significant role in the pursuit of high technology and advanced telecommunications.

On 12 July 2001, 30 minutes after lift-off from Europe’s spaceport in Kourou, French Guiana, it became apparent that the Ariane 5 launcher had propelled the Artemis satellite into a transfer orbit that was lower than expected, with the apogee (the most distant point from Earth) at only 17 000 km rather than the nominal 36 000 km.
Under normal circumstances a conventional satellite does not carry enough fuel to compensate for a shortfall in launcher performance of this magnitude. But with an innovative application of ion propulsion (*), a system 10 times more efficient than conventional chemical propulsion, recovery appeared possible. Embedded in a novel and remarkably flexible system design, used with outstanding ingenuity, team spirit and operational skills, Artemis’ propulsion capabilities proved to be the key to the rescue of an otherwise lost mission.


The initial raising of the orbit, by means of the limited chemical propulsion available, was carried out in less than 10 days by a team of Alenia Spazio, Astrium and Telespazio experts supported by ESA engineers. This speed of response was vital to prevent substantial spacecraft degradation by prolonged exposure to the radiation levels of the Van Allen belt. The duration of the firings was calculated to reach a safe parking orbit while retaining some 70 kg of fuel in the tanks, in order to eventually sustain a nominal on-station lifetime of 5 to 7 years.

All operations turned out to be extremely successful: with 5 perigee firings the apogee was lifted to 31 000 km. Subsequently, with 3 nominal apogee firings, Artemis was able to reach a circular parking orbit at 31 000 km. Considering the exceptional conditions encountered and due to the perfect performances provided by the spacecraft, both perigee and apogee firings were performed with high efficiency, consuming about 95% of the chemical propellant on board.
Preparations for the remaining orbit-raising manoeuvre, using the ion engines, required a considerable amount of work, mainly due to the need to shift the spacecraft from its nominal Earth-pointing to an in-flight pointing orientation. New onboard flight control laws had to be defined and corresponding new software written, tested and implemented under pressure of time. New operational procedures had to be established and hardware configured in a way for which it was not initially conceived. All this turned out to be a very challenging task, never attempted before by Europe on a communication spacecraft.

In January 2002 all new software modules were completed and fully tested by Alenia Spazio and Astrium . Today, Artemis starts spiralling out of its safe parking orbit to bridge the gap of some 5000 km at a rate of roughly 1 km per hour.

Whereas the initial part of the orbit-raising process, using chemical thrusters, was completed within a few days, the remaining part is expected to last more than 200 days, requiring two ion engines to fire almost continuously. That is because the thrust of these engines is very weak indeed (15 millinewtons). Their task can be compared to driving an ocean liner with an outboard motor. Artemis is expected to arrive this summer at its nominal altitude of 36 000 km.

In parallel with orbit-raising preparations, in-orbit verification of the communication payloads was performed. The most spectacular events were communication tests with the CNES (French Space Agency) SPOT-4 Earth observation satellite (see ESA press release 75/2001), during which image data from SPOT 4 were transmitted by laser light to Artemis and from there by radio waves to the Spot Image processing centre in Toulouse. All tests confirmed that Artemis’ payloads are healthy and ready to support the technological and operational communication programme.
Now the spacecraft is on course for its nominal slot in geostationary orbit. An all but lost mission is on its way to full recovery since Artemis will eventually be able to serve its users from its geostationary position for at least 5 years of nominal operation.

(*) The principle of any kind of thruster in space is to accelerate molecules and expel them from the satellite at the highest possible speed. Conventional thrusters use a chemical reaction between fuel and oxidiser to heat a gas and eject the molecules at a speed of typically 1 km/sec. Electrical propellant systems first ionise (i.e. electrically charge) the molecules of a gas (xenon, for instance). The ionised gas is then accelerated by electrical fields and ejected from the satellite at a speed of typically 10 m/sec.

Gotthard Oppenhauser | ESA

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>