Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A route to the brightest possible neutron source?

23.02.2007
In a paper in Science published this week, a team of leading UK scientists at Oxfordshire’s CCLRC Rutherford Appleton Laboratory and Edinburgh University have proposed a way to harness developments in fusion-power research which could one day provide the world’s most powerful source of neutrons for materials science research. The new neutron source would be at least a 1000 times more powerful than the best neutron sources currently available worldwide.

Neutrons are a universal tool for scientists used to study everything from new medicines to the welds in the wings of aircraft, to the wonderful weirdness at the heart of quantum mechanics. An increase in power of this magnitude would transform the field, enabling scientists to do experiments way beyond anything imaginable today.

The Oxfordshire based laboratory is already home to the world-leading ISIS neutron source and Vulcan, the world’s most powerful laser.“Conventional neutron sources are based on nuclear reactors, or like at ISIS, particle accelerators, and have almost reached their technical limits”, said Professor Mike Dunne. “But, fusion energy research has unexpectedly thrown-up a radical new alternative to use powerful lasers to compress and ignite a small pellet of tritium and deuterium, two forms of hydrogen”.

Recently advances mean that fusion by this method could take 10 times less laser energy than previously thought, making it a very attractive prospect for power generation. “Most of the mega-Joules of energy released from each pellet are in the form of neutrons, making a blindingly bright neutron source”, said lead author, Dr Andrew Taylor.

There will be formidable technical challenges in making use of these neutrons for experiments. But the benefits to research would be extraordinary and provide a tool of enormous power for scientists in the UK and around the world. The simple fact that a neutron source of this power is conceivable is likely to impact on the long term prospects and planning for neutron scattering science.

Rebekka Stredwick | alfa
Further information:
http://www.cclrc.ac.uk

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>