Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A route to the brightest possible neutron source?

23.02.2007
In a paper in Science published this week, a team of leading UK scientists at Oxfordshire’s CCLRC Rutherford Appleton Laboratory and Edinburgh University have proposed a way to harness developments in fusion-power research which could one day provide the world’s most powerful source of neutrons for materials science research. The new neutron source would be at least a 1000 times more powerful than the best neutron sources currently available worldwide.

Neutrons are a universal tool for scientists used to study everything from new medicines to the welds in the wings of aircraft, to the wonderful weirdness at the heart of quantum mechanics. An increase in power of this magnitude would transform the field, enabling scientists to do experiments way beyond anything imaginable today.

The Oxfordshire based laboratory is already home to the world-leading ISIS neutron source and Vulcan, the world’s most powerful laser.“Conventional neutron sources are based on nuclear reactors, or like at ISIS, particle accelerators, and have almost reached their technical limits”, said Professor Mike Dunne. “But, fusion energy research has unexpectedly thrown-up a radical new alternative to use powerful lasers to compress and ignite a small pellet of tritium and deuterium, two forms of hydrogen”.

Recently advances mean that fusion by this method could take 10 times less laser energy than previously thought, making it a very attractive prospect for power generation. “Most of the mega-Joules of energy released from each pellet are in the form of neutrons, making a blindingly bright neutron source”, said lead author, Dr Andrew Taylor.

There will be formidable technical challenges in making use of these neutrons for experiments. But the benefits to research would be extraordinary and provide a tool of enormous power for scientists in the UK and around the world. The simple fact that a neutron source of this power is conceivable is likely to impact on the long term prospects and planning for neutron scattering science.

Rebekka Stredwick | alfa
Further information:
http://www.cclrc.ac.uk

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>