Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A route to the brightest possible neutron source?

23.02.2007
In a paper in Science published this week, a team of leading UK scientists at Oxfordshire’s CCLRC Rutherford Appleton Laboratory and Edinburgh University have proposed a way to harness developments in fusion-power research which could one day provide the world’s most powerful source of neutrons for materials science research. The new neutron source would be at least a 1000 times more powerful than the best neutron sources currently available worldwide.

Neutrons are a universal tool for scientists used to study everything from new medicines to the welds in the wings of aircraft, to the wonderful weirdness at the heart of quantum mechanics. An increase in power of this magnitude would transform the field, enabling scientists to do experiments way beyond anything imaginable today.

The Oxfordshire based laboratory is already home to the world-leading ISIS neutron source and Vulcan, the world’s most powerful laser.“Conventional neutron sources are based on nuclear reactors, or like at ISIS, particle accelerators, and have almost reached their technical limits”, said Professor Mike Dunne. “But, fusion energy research has unexpectedly thrown-up a radical new alternative to use powerful lasers to compress and ignite a small pellet of tritium and deuterium, two forms of hydrogen”.

Recently advances mean that fusion by this method could take 10 times less laser energy than previously thought, making it a very attractive prospect for power generation. “Most of the mega-Joules of energy released from each pellet are in the form of neutrons, making a blindingly bright neutron source”, said lead author, Dr Andrew Taylor.

There will be formidable technical challenges in making use of these neutrons for experiments. But the benefits to research would be extraordinary and provide a tool of enormous power for scientists in the UK and around the world. The simple fact that a neutron source of this power is conceivable is likely to impact on the long term prospects and planning for neutron scattering science.

Rebekka Stredwick | alfa
Further information:
http://www.cclrc.ac.uk

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>