Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton reveals a magnetic surprise

23.02.2007
ESA's X-ray observatory XMM-Newton has revealed evidence for a magnetic field in space where astronomers never expected to find one. The magnetic field surrounds a young star called AB Aurigae and provides a possible solution to a twenty-year-old puzzle.

At 2.7 times the mass of the Sun, AB Aurigae is one of the most massive stars in the Taurus-Auriga star-forming cloud. Although amongst nearly 400 smaller stars, its ultraviolet radiation plays a key role in shaping the cloud. Its massive status puts it in a class known as Herbig stars, named after their discoverer George Herbig.

As part of a large programme to survey Taurus-Auriga at X-ray wavelengths, XMM-Newton systematically targeted AB Aurigae and the other young stars in this region, using its European Photon Imaging Camera (EPIC). AB Aurigae stood out brightly in the image, indicating that it was releasing X-rays.

X-rays are expected to come from young stars with strong magnetic fields but computer calculations have repeatedly suggested that Herbig stars do not have the correct internal conditions to generate an appreciable magnetic field. Yet for twenty years, astronomers have been detecting X-ray emission from them.

Where could the X-rays be coming from? Some astronomers suggested that Herbig stars could have a smaller companion star in orbit around them and the X-rays are coming from the companion.

However, when an international team led by Manuel Güdel and his graduate student Alessandra Telleschi, of the Paul Scherrer Institut, Switzerland, analysed the AB Aurigae data, they found that the temperature of the gas producing the X-rays lay between one and five million degrees centigrade. "That was suspiciously low," Güdel says. Young sun-like stars possess gaseous atmospheres that are heated to 10 million degrees and higher, by their magnetic field.

Güdel and his team found another clue that the X-rays must be coming from AB Aurigae itself: the X-rays varied in intensity every 42 hours. This is a magic number for the star because astronomers know that the optical and ultraviolet light from AB Aurigae also varies by this same amount. "Finding the same periodicity confirms that the X-rays are coming from AB Aurigae and not from a companion star," says Güdel. But how are they generated?

To search for an explanation Telleschi and colleagues looked at high-resolution data of AB Aurigae taken with the orbiting observatory's Reflection Grating Spectrometers.

In this data they looked for a spectral fingerprint that would tell them how far above the star’s surface the X-ray-emitting gas was located.

To their surprise, they found that the X-rays were coming from high above the star. They had expected them to be much closer to the surface. X-rays high above the surface means that gas given off by the star, called the stellar wind, from two different hemispheres is probably being guided together into a collision. And the only thing that could do that was a magnetic field. It would not be a strong magnetic field, but it had to be a magnetic field nonetheless.

Luckily, a group of astronomers who had developed a magnetic field model of this kind for another class of star also worked in the Taurus-Auriga observing team. So it was easy for them to contribute their expertise.

Working with them, Telleschi, Güdel and their colleagues now propose that, as the vast pocket of gas collapsed to become AB Aurigae, it pulled with it part of the magnetic field that threaded that region of space. This field is now trapped inside the star and funnels the stellar winds together. Winds from the two hemispheres thus collide to create the X-rays.

It is a neat explanation for a twenty-year mystery but, at the moment, Güdel and colleagues do not know whether this is applicable to other Herbig stars. "That's the important question," Güdel says. To resolve it, high-resolution spectra of other Herbig stars will have to be taken.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEM01WBE8YE_index_0.html

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>