Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steering atoms toward better navigation, physicists test Newton and Einstein along the way

20.02.2007
Stanford physicist Mark Kasevich has adapted the technology in today's airplane navigation systems to work with atoms so cold that they almost stand still. At temperatures scarcely above absolute zero, atoms no longer behave as particles but rather as de Broglie waves, named for the theorist who originally posited that all matter behaves as both a light wave and as a particle.

These waves can be configured to add or subtract, or interfere, with one another in an interferometer-an instrument that is used on airplanes to measure very small changes in rotation. Since global positioning system (GPS) location information is not available everywhere, airplanes still use inertial navigation systems founded on laser-based interferometers, even though their accuracy drifts over time. Kasevich's "atomic interferometer" may form the basis of a next-generation navigation system that gauges the airplane's location much more accurately.

"Navigation problems-how to get from point A to point B-tell us about space-time," says Kasevich, a professor in the departments of Physics and Applied Physics who will speak about atomic sensors Feb. 17 in San Francisco at the annual meeting of the American Association for the Advancement of Science (AAAS). "When we build these de Broglie wave navigation sensors, we're also building sensors that can test these fundamental laws about space-time."

Kasevich's atomic interferometer also is a sensitive detector of gravity-by far the weakest of the four fundamental forces of physics. Kasevich and his research group are using the interferometer to measure the gravitational constant, G, to greater precision than has ever been reached in the more than three centuries since Isaac Newton put forward his law of universal gravitation. Moreover, Kasevich is putting another physics legend to the test in ongoing research of Einstein's century-old principle of equivalence, which states it is impossible to tell the difference between the acceleration of an object due to gravity and the acceleration of its frame of reference.

The panel in which Kasevich is speaking is titled "What's Hot in Cold." Other participants include Tom Shachtman, author of the nonfiction book Absolute Zero and the Conquest of Cold, as well as physicists Heather Lewandowski of the University of Colorado-Boulder; Steven M. Girvin of Yale University; Richard Packard of the University of California-Berkeley; and Moses Chan of Pennsylvania State University-University Park. They will describe how matter cooled to low temperatures behaves according to the laws of quantum mechanics, which operate quite differently from the familiar world of classical physics. Whether gas, liquid or solid, each system in this ultracool regime proves to be a rich trove of new physics.

Interferometry-old and new

Navigation technology inspired Kasevich's atomic sensors. Airplanes monitor their attitude with ring-laser gyroscopes, which use interferometry to detect rotation. In conventional interferometers, a single-wavelength beam from a laser is split into two paths and later recombined so that the final wave exhibits a characteristic pattern. This interference pattern will differ depending upon the differences in paths traveled by the two split waves. If the paths are identical, they will recombine as the original wave. But as the airplane with its gyroscope turns, rotation of the interferometer inside changes one split wave's path relative to the other, and the difference causes the recombined wave to partially dim. With a large enough shift between the split paths, the recombined wave can vanish entirely in what is known as total destructive interference.

Kasevich's team applies this principle using not laser light but cesium atoms. As an atom is cooled to very low temperatures, below minus-459 F, its velocity slows to zero, and-due to the principles of quantum mechanics-the atom begins to behave like a wave, just as in Louis de Broglie's Nobel Prize-winning prediction of 1923. The colder and therefore slower the cesium atom becomes, the longer its wavelength. Ultimately these wave-like atoms can get so cold that they reach wavelengths comparable to visible light. And they can be split and made to recombine just as in a conventional laser interferometer, yielding the atomic interferometer.

The most bizarre property of the atomic interferometer, Kasevich says, is that total destructive interference makes atoms seem to disappear.

"Nature lets me take this atom, split it in half and bring it back together," he says. "The cesium atom is in two places at once, and nature lets it do that. You can't do that with marbles."

But matter is neither created nor destroyed. "We're manipulating the probability of where we find the matter in space," Kasevich clarifies.

Substituting an atomic interferometer for a conventional one inside an airplane's ring-laser gyroscope would yield an atomic gyroscope. The atomic gyroscope, if it could be produced at a portable size, would be a desirable replacement for ring-laser gyroscopes because the older technology loses accuracy in gauging the airplane's location to the tune of about 1 mile (1852 meters) per hour. By comparison, an atomic sensor could lead to drifts of around 16 feet (5 meters) per hour-three one-thousandths of the error.

G attracts Kasevich's interest

Besides their potential for improving navigation accuracy, Kasevich's atomic interferometers or sensors also are sensitive enough to detect changes in the split wave induced by gravity. The level of sensitivity is fine enough to be able to detect changes in gravity at levels below one part per billion. Gravity is the longest known of all fundamental physical forces. Kasevich's group continues to work to refine the atomic sensors in hopes of measuring Newton's gravitational constant G beyond the level of precision at which it has been measured-a figure that has not improved much since British natural philosopher Henry Cavendish published the first measurement more than two centuries ago.

"We want to add our voice to the chorus of 'What is G really?"' says Kasevich.

Another mystery that ultracold atoms may help solve is Einstein's equivalence principle, which to date hasn't been proved or refuted. In his equivalence principle, Einstein asserted the gravitation experienced while standing on a massive body, such as Earth, is the same as the pseudo-force experienced by an observer in an accelerated frame of reference. Just like a spinning dancer's body causes her skirt to twirl, the revolving Earth drags space and time around it, providing the frame of reference from which we determine positions and movements.

An ongoing experiment to test this principle is set up in a 10-meter-tall tube installed in the basement of the Varian Physics Building at Stanford. It employs isotopes-atoms of a chemical element with the same atomic number and nearly identical chemical behavior but with different atomic masses. Two different isotopes of rubidium are cooled to ultralow temperature and released into free fall. The wave-like atoms fall very slowly, "like releasing a fistful of sand," Kasevich says. If the two isotopes, which have slightly different masses, accelerate at differing rates as measured with atomic interferometry, this means the principle of equivalence fails.

The implications are profound, Kasevich says. "If Einstein's equivalence principle doesn't hold, that means that we would have to rethink the law of physics at a very basic level."

Dawn Levy | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>