Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotope science to have wide-ranging impact

20.02.2007
Nuclear science – and a host of other endeavors that involve the production, study and use of rare isotopes – is undergoing a quiet but dramatic revolution.

That's the conclusion of Brad Sherrill, professor of physics at Michigan State University, who says that the relatively new ability to create novel forms of atomic nuclei may be one of the great, underappreciated transformations in the physical sciences today. Sherrill is based at MSU's National Superconducting Cyclotron Laboratory (NSCL).

In today's symposium titled, "Femtoscience: From Nuclei to Nuclear Medicine," organized by Sherrill at the American Association for the Advancement of Science meeting in San Francisco, researchers from NSCL and other laboratories will describe the potential effects in several familiar fields: astrophysics, medicine and national security.

Ernest Rutherford discovered the nuclear nature of matter in the early 1900s. For most of history that followed, scientists curious about the dense knots of protons and neutrons that comprise atomic nuclei have for the most part been limited to studying the roughly 300 stable isotopes that exist in nature.

That's not the case anymore.

Thanks to existing and planned accelerator technology in physics laboratories around the world, scientists may soon have several thousand isotopes at their disposal.

"We're starting to realize that the future of many different disciplines is going to be impacted by this," said Sherrill.

David Dean, a scientist at Oak Ridge National Laboratory in Tennessee, will address the links to the decidedly unfamiliar and fuzzy world of mesoscopic science – the study of self-organization and complexity arising from elementary interactions among many dozens or hundreds of particles. A better grasp of mesoscopic science may help advance the field of quantum computing, among others.

The symposium's title is an allusion to the fact that nuclear scientists currently can tinker with nature on the femtometer scale, roughly one million times smaller than what is used to make measurements in the field of nanotechnology.

The comparison to nanotechnology, or at least to the broader realm of nanoscience, is apt in another sense, Sherrill said. Today, examples abound of basic and applied research in nanoscience. To

the casual observer the field may seem to have arrived all of a sudden – a perception that's likely the result of excessive hype by companies hoping to cash in on the latest buzzword – though in fact it is the result of decades of slow, steady advances in physics and engineering.

"In nanoscience, there wasn't one day where scientists said 'okay, now we can do nanoscience,'" said Sherrill.

Similarly, during the last few decades, scientists at facilities such as NSCL and others in Germany and Japan have been using accelerators to create new forms of nuclei with ratios of protons of neutrons that don't exist on Earth. Plans for new, more powerful accelerators will only add to the stable of isotopes at researchers' disposal. Recently, the National Academies released a draft report in December that lent strong support to the idea a new U.S. radioactive beam facility.

For now, the proliferation of such exotic nuclei is mostly helping to rewrite the physics textbooks that Sherrill read as a graduate student. But soon, he said, the potential impact of this work may be far more dramatic.

"Sometime revolutions develop slowly," he said. "You get in the middle of them before you realize it's really happened."

Brad Sherrill | EurekAlert!
Further information:
http://www.nscl.msu.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>