Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotope science to have wide-ranging impact

20.02.2007
Nuclear science – and a host of other endeavors that involve the production, study and use of rare isotopes – is undergoing a quiet but dramatic revolution.

That's the conclusion of Brad Sherrill, professor of physics at Michigan State University, who says that the relatively new ability to create novel forms of atomic nuclei may be one of the great, underappreciated transformations in the physical sciences today. Sherrill is based at MSU's National Superconducting Cyclotron Laboratory (NSCL).

In today's symposium titled, "Femtoscience: From Nuclei to Nuclear Medicine," organized by Sherrill at the American Association for the Advancement of Science meeting in San Francisco, researchers from NSCL and other laboratories will describe the potential effects in several familiar fields: astrophysics, medicine and national security.

Ernest Rutherford discovered the nuclear nature of matter in the early 1900s. For most of history that followed, scientists curious about the dense knots of protons and neutrons that comprise atomic nuclei have for the most part been limited to studying the roughly 300 stable isotopes that exist in nature.

That's not the case anymore.

Thanks to existing and planned accelerator technology in physics laboratories around the world, scientists may soon have several thousand isotopes at their disposal.

"We're starting to realize that the future of many different disciplines is going to be impacted by this," said Sherrill.

David Dean, a scientist at Oak Ridge National Laboratory in Tennessee, will address the links to the decidedly unfamiliar and fuzzy world of mesoscopic science – the study of self-organization and complexity arising from elementary interactions among many dozens or hundreds of particles. A better grasp of mesoscopic science may help advance the field of quantum computing, among others.

The symposium's title is an allusion to the fact that nuclear scientists currently can tinker with nature on the femtometer scale, roughly one million times smaller than what is used to make measurements in the field of nanotechnology.

The comparison to nanotechnology, or at least to the broader realm of nanoscience, is apt in another sense, Sherrill said. Today, examples abound of basic and applied research in nanoscience. To

the casual observer the field may seem to have arrived all of a sudden – a perception that's likely the result of excessive hype by companies hoping to cash in on the latest buzzword – though in fact it is the result of decades of slow, steady advances in physics and engineering.

"In nanoscience, there wasn't one day where scientists said 'okay, now we can do nanoscience,'" said Sherrill.

Similarly, during the last few decades, scientists at facilities such as NSCL and others in Germany and Japan have been using accelerators to create new forms of nuclei with ratios of protons of neutrons that don't exist on Earth. Plans for new, more powerful accelerators will only add to the stable of isotopes at researchers' disposal. Recently, the National Academies released a draft report in December that lent strong support to the idea a new U.S. radioactive beam facility.

For now, the proliferation of such exotic nuclei is mostly helping to rewrite the physics textbooks that Sherrill read as a graduate student. But soon, he said, the potential impact of this work may be far more dramatic.

"Sometime revolutions develop slowly," he said. "You get in the middle of them before you realize it's really happened."

Brad Sherrill | EurekAlert!
Further information:
http://www.nscl.msu.edu

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>