Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Isotope science to have wide-ranging impact

20.02.2007
Nuclear science – and a host of other endeavors that involve the production, study and use of rare isotopes – is undergoing a quiet but dramatic revolution.

That's the conclusion of Brad Sherrill, professor of physics at Michigan State University, who says that the relatively new ability to create novel forms of atomic nuclei may be one of the great, underappreciated transformations in the physical sciences today. Sherrill is based at MSU's National Superconducting Cyclotron Laboratory (NSCL).

In today's symposium titled, "Femtoscience: From Nuclei to Nuclear Medicine," organized by Sherrill at the American Association for the Advancement of Science meeting in San Francisco, researchers from NSCL and other laboratories will describe the potential effects in several familiar fields: astrophysics, medicine and national security.

Ernest Rutherford discovered the nuclear nature of matter in the early 1900s. For most of history that followed, scientists curious about the dense knots of protons and neutrons that comprise atomic nuclei have for the most part been limited to studying the roughly 300 stable isotopes that exist in nature.

That's not the case anymore.

Thanks to existing and planned accelerator technology in physics laboratories around the world, scientists may soon have several thousand isotopes at their disposal.

"We're starting to realize that the future of many different disciplines is going to be impacted by this," said Sherrill.

David Dean, a scientist at Oak Ridge National Laboratory in Tennessee, will address the links to the decidedly unfamiliar and fuzzy world of mesoscopic science – the study of self-organization and complexity arising from elementary interactions among many dozens or hundreds of particles. A better grasp of mesoscopic science may help advance the field of quantum computing, among others.

The symposium's title is an allusion to the fact that nuclear scientists currently can tinker with nature on the femtometer scale, roughly one million times smaller than what is used to make measurements in the field of nanotechnology.

The comparison to nanotechnology, or at least to the broader realm of nanoscience, is apt in another sense, Sherrill said. Today, examples abound of basic and applied research in nanoscience. To

the casual observer the field may seem to have arrived all of a sudden – a perception that's likely the result of excessive hype by companies hoping to cash in on the latest buzzword – though in fact it is the result of decades of slow, steady advances in physics and engineering.

"In nanoscience, there wasn't one day where scientists said 'okay, now we can do nanoscience,'" said Sherrill.

Similarly, during the last few decades, scientists at facilities such as NSCL and others in Germany and Japan have been using accelerators to create new forms of nuclei with ratios of protons of neutrons that don't exist on Earth. Plans for new, more powerful accelerators will only add to the stable of isotopes at researchers' disposal. Recently, the National Academies released a draft report in December that lent strong support to the idea a new U.S. radioactive beam facility.

For now, the proliferation of such exotic nuclei is mostly helping to rewrite the physics textbooks that Sherrill read as a graduate student. But soon, he said, the potential impact of this work may be far more dramatic.

"Sometime revolutions develop slowly," he said. "You get in the middle of them before you realize it's really happened."

Brad Sherrill | EurekAlert!
Further information:
http://www.nscl.msu.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>