Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-quality helium crystals show supersolid behavior

19.02.2007
High-quality, single-crystal, ultra-cold solid helium exhibits supersolid behavior, suggesting that this frictionless solid flow is not a consequence of defects and grain boundaries in poor-quality, polycrystalline, solid helium, according to a team of Penn State researchers.

In 2004, Penn state physicists -- Eunseong Kim, then-graduate student and Moses Chan, the Evan Pugh professor of physics-- announced the observance of frictionless superflow in solid helium at nearly absolute zero. This new phenomenon is a cousin of Bose-Einstein condensate observed in gases in 1995 and in liquid helium in 1938.

Since then, their results have been replicated at the University of Tokyo, Keio University, Japan, and Cornell University. While the experiment was duplicated at Cornell, one experiment there found that if the solid helium was annealed – cooled slowly from the melting point – the supersolid behavior disappeared. This suggested that the theoretical idea of supersolidity is possible only in poor-quality solid helium and that the superflow is due to defects in the poorly grown crystals.

To create solid helium, the gaseous helium must be cooled very close to absolute zero and put under at least 25 atmospheres. Unlike other gases, helium remains a liquid at ambient pressure all the way down to absolute zero. Determining that the solid helium acts as a supersolid or Bose Einstein condensate is tricky. In a Bose-Einstein condensate all the atoms are at the lowest possible energy state, and they all behave in unison. The supersolid portion of the crystalized helium appears to flow without friction. For liquids and gases, this idea is less difficult because the atoms of both move around more and can easily slide past each other. But, in a solid, especially a very cold one, atoms do not usually flow easily or without friction.

The researchers relied on inertia to determine that the ultra-cold solid helium had a supersolid component. They did the high-pressure cooling experiment in a tiny torsional oscillator, a pendulum-like setup. Liquid helium, under pressure, entered a small chamber at the end of a thin rod. The liquid then cooled to the solid phase and the torsional oscillator was set at a specific frequency.

With a normal solid, the total mass of the sample would dictate the force required to move the oscillator at a specific frequency and as long as the mass remained the same, the same force would be required to keep the system at the same frequency . In Chan and Kim's experiment, when the temperature went below 0.2 degrees Kelvin, the frequency abruptly increased, indicating that some of the solid helium was not moving with the chamber or with the rest of the solid. "At about 25 atmospheres, the initial pressure we investigated, 1 percent of the helium becomes a supersolid," says Chan. "This supersolid fraction becomes frictionless, allowing the rest of the helium to 'flow' past it."

Cornell, in duplicating this experiment used multiple experimental cells, and in one, the annealing process eliminated the supersolid effect. Tony Clark, graduate student in physics is following up on Kim's experiment to test the Cornell findings.

"All solid samples studied to date were made by the so-called blocked capillary method which tends to make poor quality crystals," says Kim. Clark made a new torsional oscillator that allows the growth of solid helium of extremely high crystallinity. The new solid helium is grown from the superfluid phase by keeping the sample cell at the temperature and pressure boundary where both solid and liquid helium coexist. As more helium is very slowly fed into the chamber, a helium crystal grows from the superfluid.

"This constant pressure growth is indeed the preferred method of many prior experiments in growing single crystals," says Chan.

These high quality crystals do exhibit supersolid response, but the supersolid percentage is smaller at only about .3 percent rather than 1 percent.

In another experiment, Chan's team tested the expected result of increased pressure on the solid helium to determine the pressure at which supersolid behavior disappears. Kim and Chan extended the experiment up to 130 atmospheres and found the supersolid portion decreases with pressure from 60 atmospheres and higher. The researchers extrapolated the decreasing fraction and determined that at or near 170 atmospheres the supersolid portion will disappear. "However, they have not carried the experiment to check this extrapolation because the sample cell exploded," says Chan.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>