Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-quality helium crystals show supersolid behavior

19.02.2007
High-quality, single-crystal, ultra-cold solid helium exhibits supersolid behavior, suggesting that this frictionless solid flow is not a consequence of defects and grain boundaries in poor-quality, polycrystalline, solid helium, according to a team of Penn State researchers.

In 2004, Penn state physicists -- Eunseong Kim, then-graduate student and Moses Chan, the Evan Pugh professor of physics-- announced the observance of frictionless superflow in solid helium at nearly absolute zero. This new phenomenon is a cousin of Bose-Einstein condensate observed in gases in 1995 and in liquid helium in 1938.

Since then, their results have been replicated at the University of Tokyo, Keio University, Japan, and Cornell University. While the experiment was duplicated at Cornell, one experiment there found that if the solid helium was annealed – cooled slowly from the melting point – the supersolid behavior disappeared. This suggested that the theoretical idea of supersolidity is possible only in poor-quality solid helium and that the superflow is due to defects in the poorly grown crystals.

To create solid helium, the gaseous helium must be cooled very close to absolute zero and put under at least 25 atmospheres. Unlike other gases, helium remains a liquid at ambient pressure all the way down to absolute zero. Determining that the solid helium acts as a supersolid or Bose Einstein condensate is tricky. In a Bose-Einstein condensate all the atoms are at the lowest possible energy state, and they all behave in unison. The supersolid portion of the crystalized helium appears to flow without friction. For liquids and gases, this idea is less difficult because the atoms of both move around more and can easily slide past each other. But, in a solid, especially a very cold one, atoms do not usually flow easily or without friction.

The researchers relied on inertia to determine that the ultra-cold solid helium had a supersolid component. They did the high-pressure cooling experiment in a tiny torsional oscillator, a pendulum-like setup. Liquid helium, under pressure, entered a small chamber at the end of a thin rod. The liquid then cooled to the solid phase and the torsional oscillator was set at a specific frequency.

With a normal solid, the total mass of the sample would dictate the force required to move the oscillator at a specific frequency and as long as the mass remained the same, the same force would be required to keep the system at the same frequency . In Chan and Kim's experiment, when the temperature went below 0.2 degrees Kelvin, the frequency abruptly increased, indicating that some of the solid helium was not moving with the chamber or with the rest of the solid. "At about 25 atmospheres, the initial pressure we investigated, 1 percent of the helium becomes a supersolid," says Chan. "This supersolid fraction becomes frictionless, allowing the rest of the helium to 'flow' past it."

Cornell, in duplicating this experiment used multiple experimental cells, and in one, the annealing process eliminated the supersolid effect. Tony Clark, graduate student in physics is following up on Kim's experiment to test the Cornell findings.

"All solid samples studied to date were made by the so-called blocked capillary method which tends to make poor quality crystals," says Kim. Clark made a new torsional oscillator that allows the growth of solid helium of extremely high crystallinity. The new solid helium is grown from the superfluid phase by keeping the sample cell at the temperature and pressure boundary where both solid and liquid helium coexist. As more helium is very slowly fed into the chamber, a helium crystal grows from the superfluid.

"This constant pressure growth is indeed the preferred method of many prior experiments in growing single crystals," says Chan.

These high quality crystals do exhibit supersolid response, but the supersolid percentage is smaller at only about .3 percent rather than 1 percent.

In another experiment, Chan's team tested the expected result of increased pressure on the solid helium to determine the pressure at which supersolid behavior disappears. Kim and Chan extended the experiment up to 130 atmospheres and found the supersolid portion decreases with pressure from 60 atmospheres and higher. The researchers extrapolated the decreasing fraction and determined that at or near 170 atmospheres the supersolid portion will disappear. "However, they have not carried the experiment to check this extrapolation because the sample cell exploded," says Chan.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>