Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-quality helium crystals show supersolid behavior

19.02.2007
High-quality, single-crystal, ultra-cold solid helium exhibits supersolid behavior, suggesting that this frictionless solid flow is not a consequence of defects and grain boundaries in poor-quality, polycrystalline, solid helium, according to a team of Penn State researchers.

In 2004, Penn state physicists -- Eunseong Kim, then-graduate student and Moses Chan, the Evan Pugh professor of physics-- announced the observance of frictionless superflow in solid helium at nearly absolute zero. This new phenomenon is a cousin of Bose-Einstein condensate observed in gases in 1995 and in liquid helium in 1938.

Since then, their results have been replicated at the University of Tokyo, Keio University, Japan, and Cornell University. While the experiment was duplicated at Cornell, one experiment there found that if the solid helium was annealed – cooled slowly from the melting point – the supersolid behavior disappeared. This suggested that the theoretical idea of supersolidity is possible only in poor-quality solid helium and that the superflow is due to defects in the poorly grown crystals.

To create solid helium, the gaseous helium must be cooled very close to absolute zero and put under at least 25 atmospheres. Unlike other gases, helium remains a liquid at ambient pressure all the way down to absolute zero. Determining that the solid helium acts as a supersolid or Bose Einstein condensate is tricky. In a Bose-Einstein condensate all the atoms are at the lowest possible energy state, and they all behave in unison. The supersolid portion of the crystalized helium appears to flow without friction. For liquids and gases, this idea is less difficult because the atoms of both move around more and can easily slide past each other. But, in a solid, especially a very cold one, atoms do not usually flow easily or without friction.

The researchers relied on inertia to determine that the ultra-cold solid helium had a supersolid component. They did the high-pressure cooling experiment in a tiny torsional oscillator, a pendulum-like setup. Liquid helium, under pressure, entered a small chamber at the end of a thin rod. The liquid then cooled to the solid phase and the torsional oscillator was set at a specific frequency.

With a normal solid, the total mass of the sample would dictate the force required to move the oscillator at a specific frequency and as long as the mass remained the same, the same force would be required to keep the system at the same frequency . In Chan and Kim's experiment, when the temperature went below 0.2 degrees Kelvin, the frequency abruptly increased, indicating that some of the solid helium was not moving with the chamber or with the rest of the solid. "At about 25 atmospheres, the initial pressure we investigated, 1 percent of the helium becomes a supersolid," says Chan. "This supersolid fraction becomes frictionless, allowing the rest of the helium to 'flow' past it."

Cornell, in duplicating this experiment used multiple experimental cells, and in one, the annealing process eliminated the supersolid effect. Tony Clark, graduate student in physics is following up on Kim's experiment to test the Cornell findings.

"All solid samples studied to date were made by the so-called blocked capillary method which tends to make poor quality crystals," says Kim. Clark made a new torsional oscillator that allows the growth of solid helium of extremely high crystallinity. The new solid helium is grown from the superfluid phase by keeping the sample cell at the temperature and pressure boundary where both solid and liquid helium coexist. As more helium is very slowly fed into the chamber, a helium crystal grows from the superfluid.

"This constant pressure growth is indeed the preferred method of many prior experiments in growing single crystals," says Chan.

These high quality crystals do exhibit supersolid response, but the supersolid percentage is smaller at only about .3 percent rather than 1 percent.

In another experiment, Chan's team tested the expected result of increased pressure on the solid helium to determine the pressure at which supersolid behavior disappears. Kim and Chan extended the experiment up to 130 atmospheres and found the supersolid portion decreases with pressure from 60 atmospheres and higher. The researchers extrapolated the decreasing fraction and determined that at or near 170 atmospheres the supersolid portion will disappear. "However, they have not carried the experiment to check this extrapolation because the sample cell exploded," says Chan.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>