Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High-quality helium crystals show supersolid behavior

High-quality, single-crystal, ultra-cold solid helium exhibits supersolid behavior, suggesting that this frictionless solid flow is not a consequence of defects and grain boundaries in poor-quality, polycrystalline, solid helium, according to a team of Penn State researchers.

In 2004, Penn state physicists -- Eunseong Kim, then-graduate student and Moses Chan, the Evan Pugh professor of physics-- announced the observance of frictionless superflow in solid helium at nearly absolute zero. This new phenomenon is a cousin of Bose-Einstein condensate observed in gases in 1995 and in liquid helium in 1938.

Since then, their results have been replicated at the University of Tokyo, Keio University, Japan, and Cornell University. While the experiment was duplicated at Cornell, one experiment there found that if the solid helium was annealed – cooled slowly from the melting point – the supersolid behavior disappeared. This suggested that the theoretical idea of supersolidity is possible only in poor-quality solid helium and that the superflow is due to defects in the poorly grown crystals.

To create solid helium, the gaseous helium must be cooled very close to absolute zero and put under at least 25 atmospheres. Unlike other gases, helium remains a liquid at ambient pressure all the way down to absolute zero. Determining that the solid helium acts as a supersolid or Bose Einstein condensate is tricky. In a Bose-Einstein condensate all the atoms are at the lowest possible energy state, and they all behave in unison. The supersolid portion of the crystalized helium appears to flow without friction. For liquids and gases, this idea is less difficult because the atoms of both move around more and can easily slide past each other. But, in a solid, especially a very cold one, atoms do not usually flow easily or without friction.

The researchers relied on inertia to determine that the ultra-cold solid helium had a supersolid component. They did the high-pressure cooling experiment in a tiny torsional oscillator, a pendulum-like setup. Liquid helium, under pressure, entered a small chamber at the end of a thin rod. The liquid then cooled to the solid phase and the torsional oscillator was set at a specific frequency.

With a normal solid, the total mass of the sample would dictate the force required to move the oscillator at a specific frequency and as long as the mass remained the same, the same force would be required to keep the system at the same frequency . In Chan and Kim's experiment, when the temperature went below 0.2 degrees Kelvin, the frequency abruptly increased, indicating that some of the solid helium was not moving with the chamber or with the rest of the solid. "At about 25 atmospheres, the initial pressure we investigated, 1 percent of the helium becomes a supersolid," says Chan. "This supersolid fraction becomes frictionless, allowing the rest of the helium to 'flow' past it."

Cornell, in duplicating this experiment used multiple experimental cells, and in one, the annealing process eliminated the supersolid effect. Tony Clark, graduate student in physics is following up on Kim's experiment to test the Cornell findings.

"All solid samples studied to date were made by the so-called blocked capillary method which tends to make poor quality crystals," says Kim. Clark made a new torsional oscillator that allows the growth of solid helium of extremely high crystallinity. The new solid helium is grown from the superfluid phase by keeping the sample cell at the temperature and pressure boundary where both solid and liquid helium coexist. As more helium is very slowly fed into the chamber, a helium crystal grows from the superfluid.

"This constant pressure growth is indeed the preferred method of many prior experiments in growing single crystals," says Chan.

These high quality crystals do exhibit supersolid response, but the supersolid percentage is smaller at only about .3 percent rather than 1 percent.

In another experiment, Chan's team tested the expected result of increased pressure on the solid helium to determine the pressure at which supersolid behavior disappears. Kim and Chan extended the experiment up to 130 atmospheres and found the supersolid portion decreases with pressure from 60 atmospheres and higher. The researchers extrapolated the decreasing fraction and determined that at or near 170 atmospheres the supersolid portion will disappear. "However, they have not carried the experiment to check this extrapolation because the sample cell exploded," says Chan.

A'ndrea Elyse Messer | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>