Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New observations show sun-like star in earliest stage of development

Members of a research team led by the University of Colorado at Boulder have used NASA’s Chandra X-ray Observatory to peer at the embryo of an infant star in the nearby Eagle Nebula, which they believe may someday develop into a virtual twin of Earth’s sun.

The object, known as an evaporating gas globule, or EGG, has the same mass as the sun and appears to be evolving in a violent environment much like the one believed to have produced Earth’s sun, said researcher Jeffrey Linsky of JILA, a joint institute of CU-Boulder and the National Institute of Standards and Technology. Located in a region called the Pillars of Creation in the Eagle Nebula roughly 7,000 light-years from Earth, the object -- dubbed E42 -- is thought to be in the earliest stage astronomers have ever detected a star like the sun, said Linsky.

A new image of the Pillars of Creation, consisting of a Hubble Space Telescope image overlaid with Chandra X-ray data, was released Feb.15 by the Chandra X-ray Observatory Center in Cambridge, Mass. The image, which shows red, green and blue dots representing low-, medium- and high-energy X-rays, indicates there are relatively few X-ray sources in the pillars and suggests the Eagle Nebula is past its star-forming prime, said Linsky.

Linsky and colleagues from West Chester University in Pennsylvania, the University of Exeter in England and the University of Arizona analyzed visual and infrared emissions from the pillars to identify E42, the sun-like proto-star. E42 is located in the left pillar on the right edge of a node jutting out to the right about two-thirds of the way down the pillar.

“We think this is a very, very early version of our own sun,” said Linsky.

E42 is one of 73 EGGs discovered in the Pillars of Creation in 1996 with the Hubble Space Telescope by Arizona State University astronomer Jeff Hester and his team. While 11 of the EGGs have been determined to contain infant stellar objects, only four are massive enough to form a star. Of those, E42 is the only one that has a sun-sized mass, said Linsky.

“The four proto-stars that we have identified on the edges of the pillars are probably the youngest stars ever imaged by astronomers,” Linsky said.

While Linsky and his team used Chandra to zero in on more than 1,100 hotter, more mature stars in the Eagle Nebula, neither E42 nor the other three EGGs believed massive enough to form stars were observed to be emitting any X-rays, he said. “The results indicate young, evolving stars like E42 have not yet developed the magnetic structures needed to produce X-rays,” he said.

Earth’s sun is thought to have formed some 5 billion years ago after clouds of dust and gas were seared by ultraviolet radiation and pounded by shockwaves from one or more supernovae explosions, Linsky said. “The sun was likely born in a region like the Pillars of Creation because the chemical abundances in the solar system indicate that a supernova occurred nearby and contributed its heavy elements to the gas of which the sun and the planets formed.”

A January 2007 study by an astronomy team from France suggested the pillars were toppled some 6,000 years ago by a nearby supernova explosion, as evidenced by a glowing cloud of scorched dust adjacent to the pillars. Since the pillars are roughly 7,000 light years away, the French team contends they will still be visible from Earth as “ghost images” for another thousand years or so.

“My guess is that the shock wave from the supernova may have been far enough away so that E42 and some of the other stars may have survived,” said Linsky. “But I guess we will have to wait another thousand years or so to get the answer.”

Jeffrey Linsky | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>