Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clock comparison yields clues to 'constant' change

19.02.2007
Years of comparisons among the world's best atomic clocks—based on different atoms—have established the most precise limits ever achieved in the laboratory for detecting possible changes in so-called "constants" of nature. The comparisons at the National Institute of Standards and Technology (NIST) may help scientists test the latest theories in physics and develop a more complete understanding of the history of the universe.

Some astronomical and geological studies suggest there might have been very small changes in the values of fundamental constants over billions of years, although the results have been inconsistent and controversial. If fundamental constants are changing, the present-day rates of change are too small to be measured using conventional methods.

However, a new comparison of NIST's cesium fountain and mercury ion clocks, scheduled to appear in this week's issue of Physical Review Letters,* has narrowed the range in which one of them—the "fine-structure constant"— possibly could be changing by a factor of 20. Widely used in physical theory and experiments, the fine-structure constant, represents the strength of the interaction between electrons and photons.

Astronomers and geologists have attempted to detect changes in natural constants by examining phenomena dating back billions of years. The NIST experiments attained the same level of precision by comparing the relative drifts in the "ticks" of an experimental mercury ion clock, which operates at optical frequencies, and NIST-F1, the national standard cesium clock, which operates at lower microwave frequencies. These data can be plugged into equations to obtain upper limits for possible rates of change of the fine structure constant in recent times.

A second study, based on seven years of comparisons of cesium and hydrogen clocks at NIST and in Europe,** achieved record limits on Local Position Invariance, the principle that two clocks based on natural frequencies of different atoms should undergo proportional frequency shifts when subjected to the same changes in gravitational field. The new experiments lowered the upper limit for a possible violation of LPI, by more than 20 times.

Changes in physical constants such as the fine structure constant or the gravitational constant would violate Albert Einstein's original theory of general relativity. Such violations are predicted in recent theories aimed at unifying gravitation and quantum mechanics. NIST scientists now plan an all-optical-frequency comparison of the mercury ion clock with an aluminum ion atomic clock, which could increase measurement precision further, offering a more stringent test of the theoretically predicted changes. Conducting such tests with many different types of atomic clocks offers the best chance of eliminating extraneous factors to clearly identify which, if any, of the fundamental "constants" are changing over time.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>