Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clock comparison yields clues to 'constant' change

19.02.2007
Years of comparisons among the world's best atomic clocks—based on different atoms—have established the most precise limits ever achieved in the laboratory for detecting possible changes in so-called "constants" of nature. The comparisons at the National Institute of Standards and Technology (NIST) may help scientists test the latest theories in physics and develop a more complete understanding of the history of the universe.

Some astronomical and geological studies suggest there might have been very small changes in the values of fundamental constants over billions of years, although the results have been inconsistent and controversial. If fundamental constants are changing, the present-day rates of change are too small to be measured using conventional methods.

However, a new comparison of NIST's cesium fountain and mercury ion clocks, scheduled to appear in this week's issue of Physical Review Letters,* has narrowed the range in which one of them—the "fine-structure constant"— possibly could be changing by a factor of 20. Widely used in physical theory and experiments, the fine-structure constant, represents the strength of the interaction between electrons and photons.

Astronomers and geologists have attempted to detect changes in natural constants by examining phenomena dating back billions of years. The NIST experiments attained the same level of precision by comparing the relative drifts in the "ticks" of an experimental mercury ion clock, which operates at optical frequencies, and NIST-F1, the national standard cesium clock, which operates at lower microwave frequencies. These data can be plugged into equations to obtain upper limits for possible rates of change of the fine structure constant in recent times.

A second study, based on seven years of comparisons of cesium and hydrogen clocks at NIST and in Europe,** achieved record limits on Local Position Invariance, the principle that two clocks based on natural frequencies of different atoms should undergo proportional frequency shifts when subjected to the same changes in gravitational field. The new experiments lowered the upper limit for a possible violation of LPI, by more than 20 times.

Changes in physical constants such as the fine structure constant or the gravitational constant would violate Albert Einstein's original theory of general relativity. Such violations are predicted in recent theories aimed at unifying gravitation and quantum mechanics. NIST scientists now plan an all-optical-frequency comparison of the mercury ion clock with an aluminum ion atomic clock, which could increase measurement precision further, offering a more stringent test of the theoretically predicted changes. Conducting such tests with many different types of atomic clocks offers the best chance of eliminating extraneous factors to clearly identify which, if any, of the fundamental "constants" are changing over time.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>