Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotube, heal thyself

19.02.2007
Atomic blemishes move, repairing molecular skin in their wake

Pound for pound, carbon nanotubes are stronger and lighter than steel, but unlike other materials, the miniscule cylinders of carbon – which are no wider than a strand of DNA – remain remarkably robust even when chunks of their bodies are blasted away with heat or radiation. A new study by Rice University scientists offers the first explanation: tiny blemishes crawl over the skin of the damaged tubes, sewing up larger holes as they go.

"The shape and direction of this imperfection does not change, and it never gets any larger," said lead researcher Boris Yakobson, professor of mechanical engineering and materials science and of chemistry. "We were amazed by it, but upon further study we found a good explanation. The atomic irregularity acts as a kind of safety valve, allowing the nanotube to release excess energy, in much the way that a valve allows steam to escape from a kettle."

The research appears Feb. 16 issue of in Physical Review Letters.

Carbon nanotubes are hollow cylinders of pure carbon that measure about a billionth of a meter, or one nanometer, across. They are much longer than they are wide, akin in shape to 100-foot garden hose, and they're 100 times stronger than steel at one-sixth the weight.

The carbon atoms in nanotubes are joined together in six-sided hexagons, so when scientists sketch out the arrangement on paper, nanotubes look something like a rolled up tube of chicken wire. Yakobson's "smart repair machine" is a deformity, a blemish in this pattern. The blemish consists of a five-sided pentagon joined to a seven-sided heptagon and contains a total of ten atoms. Yakobson, who specializes in using computers to decipher the atomic pecularities of materials, discovered several years ago that mechanically stressed nanotubes – like those being pulled very hard from both ends – are predisposed to develop these 5/7-defects due to the complex interplay of thermodynamic forces at work in the nanotube.

In the latest study, Yakobson, research associate Feng Ding and students examined the effects of other types of stress, including exposure to heat and radiation. The tests confirmed the predisposition of nanotubes to develop the 5/7 blemishes, and they revealed the blemishes' unexpected healing powers.

"The 5/7-blemishes move across the surface of the nanotube like a steamship, giving off puffs of carbon gas," said Ding. "In their wake, the skin of the tube appears pristine, in its characteristic hexagonal arrangement."

Yakobson said the blemishes consume all larger defects, and chug along indefinitely, rearranging atoms and healing the skin of the damaged nanotubes. This explains how nanotubes retain their strength, even when severely damaged. But the healing comes with a price.

"In their role as a safety valve, the 57-steamers give off energy and mass, which is released as pairs of gaseous carbon atoms," Yakobson said. "Since they never change shape or stop moving, they ever so slowly eat away the surface of the nanotube, one pair of atoms at a time."

Yakobson said the 5/7-blemishes turn when they reach the end of the nanotube and return in the opposite direction. In fact, there's only one thing that can stop them: another 5/7 blemish. If two of the blemishes run headlong into one other, they cancel each other out and disappear.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>