Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA celebrates 15 years of near-real time data delivery in Earth observation

19.02.2007
Decision-makers, scientists and local authorities require up-to-date environmental information in order to manage natural resources, respond to natural disasters and better understand climate change. ESA has been responding to this requirement since 1992 by offering data from Earth-observing satellites in near-real time to allow users to study and monitor the current state of the oceans, lands, atmosphere and cryosphere.

At the end of the commissioning phase of ESA’s ERS-1 satellite in early 1992, the space agency began disseminating oceanographic data of the satellite’s onboard instruments to users through a network of landlines. Many of these data were re-formatted in near-real time for compatibility with end-users connected to the World Meteorological Organisation (WMO) network.

A few months later, ESA implemented an innovative system allowing some users to receive data through small dish antennas. This system, called Broadband Data Dissemination Network (BDDN), was based on telecommunication satellites broadcast. During this period, only data of small volume were delivered in near-real time (i.e. within three hours), while data of larger volumes took nearly 24 hours to be delivered.

As the need for timely information increased for environmental forecasting and disaster response, ESA sought to speed up its data flow by making use of emerging technologies. By the time ESA launched ERS-2 in 1995, the space agency was readily using the Internet to deliver data from more sophisticated instruments, such as the Global Ozone Monitoring Experiment (GOME).

Responding to the growing demand for ozone data to monitor the ozone layer and improve ultraviolet (UV) radiation forecasts, ESA began using the GOME instrument aboard ERS-2 to maintain a regular census of global stratospheric ozone levels. Since 1997, the sensor has been delivering near-real time data on ozone levels to users. It also provides coverage of other trace gases, UV and air-pollution monitoring.

The need for near-real time data delivery has continued to increase over the last 10 years as a consequence of the incredible progress in Information Technology; the power of computers and the growth in network bandwidths and storage capacities have resulted in Earth observation (EO) users requesting larger volumes of data to be delivered in unprecedented time frames.

In an effort to meet these demands and deal with the vast amount of near-real time data produced by Envisat, the world’s largest Earth-observing satellite launched by ESA in 2002, ESA upgraded its data delivery method to the quicker Data Dissemination System (DDS), which also uses telecommunication satellites. In addition, as the ESA mandate for delivering EO data expanded to non-ESA missions (Third Party Missions), the various European centres delivering EO data were interconnected through large communication networks.

Fifteen years later, there are many established services requesting near-real time EO data delivery. For example, utilising data from Envisat’s Advanced Along Track Scanning Radiometer (AATSR) instrument, as well as other instruments aboard different satellites, daily sea surface temperature maps of European seas are made available as part of the agency’s Medspiration project. Because the AATSR instrument has an unprecedented spatial resolution of two square kilometres, the maps also allow for detailed features like eddies, fronts and plumes to be detected.

Today’s Earth check-up provides access to daily worldwide fire maps, UV radiation levels, ozone forecasts and daily sea surface temperatures.

The latest ESA near-real time capability added to the Earth check-up is MIRAVI, short for MERIS Images RApid Visualisation. MIRAVI, which debuted last December, allows people unfamiliar with EO data to track natural events in progress, such as fires, floods and volcanic eruptions, or simply explore the planet through the eyes of a satellite. Although the MIRAVI images are fascinating and provide the marvellous feeling that users are ‘onboard the satellite’, scientists prefer to use the complete MERIS products, which are also available through near-real time servers, for research purposes.

Just as ESA has met the growing number of users and requests for data from a few gigabytes transmitted per day in 1992 to 400 gigabytes delivered daily in 2007, it will continue to develop and exploit new technologies to meet the rising demands of near-real time Earth data from space.

In the next months, ESA will further expand its range of EO data available in near-real time to scientists by allowing them easy access to large amounts of Synthetic Aperture Radar (SAR) and MERIS data, particularly over Europe.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM148BE8YE_planet_0.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>