Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA celebrates 15 years of near-real time data delivery in Earth observation

19.02.2007
Decision-makers, scientists and local authorities require up-to-date environmental information in order to manage natural resources, respond to natural disasters and better understand climate change. ESA has been responding to this requirement since 1992 by offering data from Earth-observing satellites in near-real time to allow users to study and monitor the current state of the oceans, lands, atmosphere and cryosphere.

At the end of the commissioning phase of ESA’s ERS-1 satellite in early 1992, the space agency began disseminating oceanographic data of the satellite’s onboard instruments to users through a network of landlines. Many of these data were re-formatted in near-real time for compatibility with end-users connected to the World Meteorological Organisation (WMO) network.

A few months later, ESA implemented an innovative system allowing some users to receive data through small dish antennas. This system, called Broadband Data Dissemination Network (BDDN), was based on telecommunication satellites broadcast. During this period, only data of small volume were delivered in near-real time (i.e. within three hours), while data of larger volumes took nearly 24 hours to be delivered.

As the need for timely information increased for environmental forecasting and disaster response, ESA sought to speed up its data flow by making use of emerging technologies. By the time ESA launched ERS-2 in 1995, the space agency was readily using the Internet to deliver data from more sophisticated instruments, such as the Global Ozone Monitoring Experiment (GOME).

Responding to the growing demand for ozone data to monitor the ozone layer and improve ultraviolet (UV) radiation forecasts, ESA began using the GOME instrument aboard ERS-2 to maintain a regular census of global stratospheric ozone levels. Since 1997, the sensor has been delivering near-real time data on ozone levels to users. It also provides coverage of other trace gases, UV and air-pollution monitoring.

The need for near-real time data delivery has continued to increase over the last 10 years as a consequence of the incredible progress in Information Technology; the power of computers and the growth in network bandwidths and storage capacities have resulted in Earth observation (EO) users requesting larger volumes of data to be delivered in unprecedented time frames.

In an effort to meet these demands and deal with the vast amount of near-real time data produced by Envisat, the world’s largest Earth-observing satellite launched by ESA in 2002, ESA upgraded its data delivery method to the quicker Data Dissemination System (DDS), which also uses telecommunication satellites. In addition, as the ESA mandate for delivering EO data expanded to non-ESA missions (Third Party Missions), the various European centres delivering EO data were interconnected through large communication networks.

Fifteen years later, there are many established services requesting near-real time EO data delivery. For example, utilising data from Envisat’s Advanced Along Track Scanning Radiometer (AATSR) instrument, as well as other instruments aboard different satellites, daily sea surface temperature maps of European seas are made available as part of the agency’s Medspiration project. Because the AATSR instrument has an unprecedented spatial resolution of two square kilometres, the maps also allow for detailed features like eddies, fronts and plumes to be detected.

Today’s Earth check-up provides access to daily worldwide fire maps, UV radiation levels, ozone forecasts and daily sea surface temperatures.

The latest ESA near-real time capability added to the Earth check-up is MIRAVI, short for MERIS Images RApid Visualisation. MIRAVI, which debuted last December, allows people unfamiliar with EO data to track natural events in progress, such as fires, floods and volcanic eruptions, or simply explore the planet through the eyes of a satellite. Although the MIRAVI images are fascinating and provide the marvellous feeling that users are ‘onboard the satellite’, scientists prefer to use the complete MERIS products, which are also available through near-real time servers, for research purposes.

Just as ESA has met the growing number of users and requests for data from a few gigabytes transmitted per day in 1992 to 400 gigabytes delivered daily in 2007, it will continue to develop and exploit new technologies to meet the rising demands of near-real time Earth data from space.

In the next months, ESA will further expand its range of EO data available in near-real time to scientists by allowing them easy access to large amounts of Synthetic Aperture Radar (SAR) and MERIS data, particularly over Europe.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM148BE8YE_planet_0.html

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>