Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA THEMIS mission adds five spacecraft to the Sun-Earth flotilla

Tonight NASA plans to launch its five THEMIS scientific satellites onboard a Delta-2 rocket from Cape Canaveral, Florida USA, to join the spacefleet of Sun-Earth connection explorers – four from the ESA Cluster mission and two from the CNSA/ESA Double Star mission.

The main scientific objective of THEMIS (Time History of Events and Macroscale Interactions during Substorms) is to find what triggers magnetic substorms. This phenomenon corresponds to periods of time during which violent changes happen within the Earth's magnetic environment or magnetosphere.

It is triggered at distances from one tenth to half the Earth-Moon distance on the nightside of Earth and hurls energetic particles towards our planet. These particles are responsible for the very bright and colourful auroras and are usually harmless. However, when the Sun unleashes massive clouds of charged particles towards Earth, a series of 10 or more substorms can occur in rapid succession. Such a series may be responsible for the failure of power grids and satellites observed during some of these events.

Six plus five equals eleven

Cluster is the first space mission composed of four satellites flying in formation to study the Sun-Earth connection. Launched in 2000, this mission, originally planned for two years, has been extended to the end of 2009. It was joined in 2003 by the first Double Star spacecraft named TC-1 and in 2004 by TC-2, both partially equipped with spare instruments of the Cluster satellites. Double Star is the first Chinese scientific space mission in the Earth's magnetosphere.

The THEMIS satellites will be highly complementary to the Cluster and Double Star ones since they will monitor opposite regions of the magnetosphere with respect to Earth. For example, during winter season 2007/2008, while THEMIS will be in the magnetotail (nightside) studying the source region of the substorms, the Cluster mission will spend a significant part of its orbit around Earth in the solar wind (dayside) and cross the auroral region at mid-altitude. The apogee of TC-1 is located approximately in between. For the first time, about half of the magnetosphere and its environment will be monitored simultaneously by state-of the-art scientific instrumentation, thanks to these three missions.

European involvement

THEMIS is the fifth medium–class mission selected by NASA under its Explorer Program with Professor Vassilis Angelopoulos (Space Science Laboratory of UC Berkeley, USA) as Principal Investigator of the mission. Each THEMIS satellite carries an identical set of five scientific instruments. The development of two of these instruments was done in close collaboration between American and European institutes from Austria, France and Germany. Part of the electronics of these instruments has been manufactured in Europe. Several European research institutes will take an active part in the scientific exploitation of these future measurements. Such a deep scientific collaboration is not a first. It is built on years of fruitful collaboration such as that on Cluster where discoveries have been made thanks to active collaboration between researchers from both sides of the Atlantic.

"This is the first time in history of Space Physics that such a high number of scientific satellites are in operation simultaneously. It represents an unprecedented opportunity to study the global solar-magnetospheric environment and the physical processes involved. We wish all the best to our American colleagues for a successful launch", says ESA's Philippe Escoubet, Double Star and Cluster project scientist. For more information on the Sun-Earth explorers, contact:

Philippe Escoubet
ESA Cluster Project Scientist
Email: philippe.escoubet @

Philippe Escoubet | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>