Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA THEMIS mission adds five spacecraft to the Sun-Earth flotilla

19.02.2007
Tonight NASA plans to launch its five THEMIS scientific satellites onboard a Delta-2 rocket from Cape Canaveral, Florida USA, to join the spacefleet of Sun-Earth connection explorers – four from the ESA Cluster mission and two from the CNSA/ESA Double Star mission.

The main scientific objective of THEMIS (Time History of Events and Macroscale Interactions during Substorms) is to find what triggers magnetic substorms. This phenomenon corresponds to periods of time during which violent changes happen within the Earth's magnetic environment or magnetosphere.

It is triggered at distances from one tenth to half the Earth-Moon distance on the nightside of Earth and hurls energetic particles towards our planet. These particles are responsible for the very bright and colourful auroras and are usually harmless. However, when the Sun unleashes massive clouds of charged particles towards Earth, a series of 10 or more substorms can occur in rapid succession. Such a series may be responsible for the failure of power grids and satellites observed during some of these events.

Six plus five equals eleven

Cluster is the first space mission composed of four satellites flying in formation to study the Sun-Earth connection. Launched in 2000, this mission, originally planned for two years, has been extended to the end of 2009. It was joined in 2003 by the first Double Star spacecraft named TC-1 and in 2004 by TC-2, both partially equipped with spare instruments of the Cluster satellites. Double Star is the first Chinese scientific space mission in the Earth's magnetosphere.

The THEMIS satellites will be highly complementary to the Cluster and Double Star ones since they will monitor opposite regions of the magnetosphere with respect to Earth. For example, during winter season 2007/2008, while THEMIS will be in the magnetotail (nightside) studying the source region of the substorms, the Cluster mission will spend a significant part of its orbit around Earth in the solar wind (dayside) and cross the auroral region at mid-altitude. The apogee of TC-1 is located approximately in between. For the first time, about half of the magnetosphere and its environment will be monitored simultaneously by state-of the-art scientific instrumentation, thanks to these three missions.

European involvement

THEMIS is the fifth medium–class mission selected by NASA under its Explorer Program with Professor Vassilis Angelopoulos (Space Science Laboratory of UC Berkeley, USA) as Principal Investigator of the mission. Each THEMIS satellite carries an identical set of five scientific instruments. The development of two of these instruments was done in close collaboration between American and European institutes from Austria, France and Germany. Part of the electronics of these instruments has been manufactured in Europe. Several European research institutes will take an active part in the scientific exploitation of these future measurements. Such a deep scientific collaboration is not a first. It is built on years of fruitful collaboration such as that on Cluster where discoveries have been made thanks to active collaboration between researchers from both sides of the Atlantic.

"This is the first time in history of Space Physics that such a high number of scientific satellites are in operation simultaneously. It represents an unprecedented opportunity to study the global solar-magnetospheric environment and the physical processes involved. We wish all the best to our American colleagues for a successful launch", says ESA's Philippe Escoubet, Double Star and Cluster project scientist. For more information on the Sun-Earth explorers, contact:

Philippe Escoubet
ESA Cluster Project Scientist
Email: philippe.escoubet @ esa.int

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEM6YRO2UXE_index_0.html

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>