Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA THEMIS mission adds five spacecraft to the Sun-Earth flotilla

19.02.2007
Tonight NASA plans to launch its five THEMIS scientific satellites onboard a Delta-2 rocket from Cape Canaveral, Florida USA, to join the spacefleet of Sun-Earth connection explorers – four from the ESA Cluster mission and two from the CNSA/ESA Double Star mission.

The main scientific objective of THEMIS (Time History of Events and Macroscale Interactions during Substorms) is to find what triggers magnetic substorms. This phenomenon corresponds to periods of time during which violent changes happen within the Earth's magnetic environment or magnetosphere.

It is triggered at distances from one tenth to half the Earth-Moon distance on the nightside of Earth and hurls energetic particles towards our planet. These particles are responsible for the very bright and colourful auroras and are usually harmless. However, when the Sun unleashes massive clouds of charged particles towards Earth, a series of 10 or more substorms can occur in rapid succession. Such a series may be responsible for the failure of power grids and satellites observed during some of these events.

Six plus five equals eleven

Cluster is the first space mission composed of four satellites flying in formation to study the Sun-Earth connection. Launched in 2000, this mission, originally planned for two years, has been extended to the end of 2009. It was joined in 2003 by the first Double Star spacecraft named TC-1 and in 2004 by TC-2, both partially equipped with spare instruments of the Cluster satellites. Double Star is the first Chinese scientific space mission in the Earth's magnetosphere.

The THEMIS satellites will be highly complementary to the Cluster and Double Star ones since they will monitor opposite regions of the magnetosphere with respect to Earth. For example, during winter season 2007/2008, while THEMIS will be in the magnetotail (nightside) studying the source region of the substorms, the Cluster mission will spend a significant part of its orbit around Earth in the solar wind (dayside) and cross the auroral region at mid-altitude. The apogee of TC-1 is located approximately in between. For the first time, about half of the magnetosphere and its environment will be monitored simultaneously by state-of the-art scientific instrumentation, thanks to these three missions.

European involvement

THEMIS is the fifth medium–class mission selected by NASA under its Explorer Program with Professor Vassilis Angelopoulos (Space Science Laboratory of UC Berkeley, USA) as Principal Investigator of the mission. Each THEMIS satellite carries an identical set of five scientific instruments. The development of two of these instruments was done in close collaboration between American and European institutes from Austria, France and Germany. Part of the electronics of these instruments has been manufactured in Europe. Several European research institutes will take an active part in the scientific exploitation of these future measurements. Such a deep scientific collaboration is not a first. It is built on years of fruitful collaboration such as that on Cluster where discoveries have been made thanks to active collaboration between researchers from both sides of the Atlantic.

"This is the first time in history of Space Physics that such a high number of scientific satellites are in operation simultaneously. It represents an unprecedented opportunity to study the global solar-magnetospheric environment and the physical processes involved. We wish all the best to our American colleagues for a successful launch", says ESA's Philippe Escoubet, Double Star and Cluster project scientist. For more information on the Sun-Earth explorers, contact:

Philippe Escoubet
ESA Cluster Project Scientist
Email: philippe.escoubet @ esa.int

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEM6YRO2UXE_index_0.html

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>