Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First X-ray detection of a colliding-wind binary beyond the Milky Way

19.02.2007
Imagine two stars with winds so powerful that they eject an Earth's worth of material roughly once every month. Next, imagine those two winds colliding head-on. Such titanic collisions produce multimillion-degree gas, which radiates brilliantly in X-rays. Astronomers have conclusively identified the X-rays from about two-dozen of these systems in our Milky Way. But they have never seen one outside our galaxy — until now.

Thanks to the European Space Agency's XMM-Newton X-ray observatory, with help from NASA's Chandra X-ray Observatory, an international team led by Dr Yaël Nazé of the Université de Liège in Belgium has found such a system in a nearby galaxy. This galaxy, the Small Magellanic Cloud, orbits the Milky Way and is located about 170 000 light-years from Earth.

The binary system, known as HD 5980, contains two extremely massive stars, 'weighing' about 50 and 30 times the mass of the Sun. Each star radiates more than a million times as much light as the Sun, meaning they put out more light in one minute than our host star generates in an entire year.

The sheer photon pressure of this incredible outpouring of light blows off gas from each star in a supersonic 'wind'. These winds are so powerful that they carry away roughly an Earth mass each month, a rate 10 thousand million times greater than the solar wind, and at a speed 5 times faster than the solar wind itself.

HD 5980's two stars are separated by only about 90 million kilometres, roughly half Earth's average distance from the Sun. "These stars are so close to each other that if they were in our solar system they could fit inside the orbit of Venus," says Nazé. As a result, the winds smash into each other with tremendous force, heating the gas and generating enormous numbers of X-rays.

"The system emits about 10 times more energy in X-rays alone than the Sun radiates over the entire spectrum," says team member Dr Michael F. Corcoran, a scientist with the Universities Space Research Association at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Using data from Chandra, the same team first reported HD 5980's highly energetic X-ray emission in 2002. But its origin was uncertain. Data taken from 2000 to 2005 with XMM-Newton shows that it is indeed produced by a wind collision.

The stars orbit each other every 20 days in a plane that is edge-on to Earth's line of sight, so the stars periodically eclipse each other. The wind collision is thus seen from different angles and through different amounts of material. XMM-Newton saw the X-ray emission rise and fall in a repeatable, predictable pattern.

"Similar X-ray variability from massive binaries inside the Milky Way have been detected, but this is the first indisputable evidence for the phenomenon outside our galaxy," says Nazé. "This discovery highlights the great capabilities of modern X-ray observatories."

XMM-Newton has the largest mirrors of any X-ray observatory ever flown, and the sheer size of these mirrors allowed astronomers to monitor this distant system. HD 5980 itself is surrounded by hot interstellar material that creates a diffuse X-ray glow that makes the object difficult to study. "The Chandra data allowed us to pinpoint HD 5980 and resolve the system from the diffuse emission," says Corcoran.

HD 5980 is one of the Small Magellanic Cloud's brightest stars. Situated on the periphery of the star cluster NGC 346, the two stars are nearing the end of their lives and will eventually explode as supernovae. The more massive star, HD 5980A, is passing through a Luminous Blue Variable (LBV) phase — a short-lived, erratic stage that only the most massive stars go through. The most well-known LBV in our galaxy, Eta Carinae, produced a giant outburst that was recorded by astronomers in the 1840s. HD 5980A experienced a smaller-scale outburst that was seen in 1993-94. Its companion, HD 5980B, is an evolved Wolf-Rayet star that has already ejected much of its original envelope.

"It's interesting to be able to study an extragalactic colliding-wind binary like HD 5980 as if it were in our own galaxy", says Corcoran. "Colliding winds provide an important handle on how massive stars shed material. Being able to study them in external galaxies means we can study the effects of different compositions and environments on how these massive stars evolve. From the XMM-Newton data, we can study the delicate balance between the two winds, and determine the changing strength of the winds."

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMPYIO2UXE_index_0.html

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>