Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First X-ray detection of a colliding-wind binary beyond the Milky Way

19.02.2007
Imagine two stars with winds so powerful that they eject an Earth's worth of material roughly once every month. Next, imagine those two winds colliding head-on. Such titanic collisions produce multimillion-degree gas, which radiates brilliantly in X-rays. Astronomers have conclusively identified the X-rays from about two-dozen of these systems in our Milky Way. But they have never seen one outside our galaxy — until now.

Thanks to the European Space Agency's XMM-Newton X-ray observatory, with help from NASA's Chandra X-ray Observatory, an international team led by Dr Yaël Nazé of the Université de Liège in Belgium has found such a system in a nearby galaxy. This galaxy, the Small Magellanic Cloud, orbits the Milky Way and is located about 170 000 light-years from Earth.

The binary system, known as HD 5980, contains two extremely massive stars, 'weighing' about 50 and 30 times the mass of the Sun. Each star radiates more than a million times as much light as the Sun, meaning they put out more light in one minute than our host star generates in an entire year.

The sheer photon pressure of this incredible outpouring of light blows off gas from each star in a supersonic 'wind'. These winds are so powerful that they carry away roughly an Earth mass each month, a rate 10 thousand million times greater than the solar wind, and at a speed 5 times faster than the solar wind itself.

HD 5980's two stars are separated by only about 90 million kilometres, roughly half Earth's average distance from the Sun. "These stars are so close to each other that if they were in our solar system they could fit inside the orbit of Venus," says Nazé. As a result, the winds smash into each other with tremendous force, heating the gas and generating enormous numbers of X-rays.

"The system emits about 10 times more energy in X-rays alone than the Sun radiates over the entire spectrum," says team member Dr Michael F. Corcoran, a scientist with the Universities Space Research Association at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Using data from Chandra, the same team first reported HD 5980's highly energetic X-ray emission in 2002. But its origin was uncertain. Data taken from 2000 to 2005 with XMM-Newton shows that it is indeed produced by a wind collision.

The stars orbit each other every 20 days in a plane that is edge-on to Earth's line of sight, so the stars periodically eclipse each other. The wind collision is thus seen from different angles and through different amounts of material. XMM-Newton saw the X-ray emission rise and fall in a repeatable, predictable pattern.

"Similar X-ray variability from massive binaries inside the Milky Way have been detected, but this is the first indisputable evidence for the phenomenon outside our galaxy," says Nazé. "This discovery highlights the great capabilities of modern X-ray observatories."

XMM-Newton has the largest mirrors of any X-ray observatory ever flown, and the sheer size of these mirrors allowed astronomers to monitor this distant system. HD 5980 itself is surrounded by hot interstellar material that creates a diffuse X-ray glow that makes the object difficult to study. "The Chandra data allowed us to pinpoint HD 5980 and resolve the system from the diffuse emission," says Corcoran.

HD 5980 is one of the Small Magellanic Cloud's brightest stars. Situated on the periphery of the star cluster NGC 346, the two stars are nearing the end of their lives and will eventually explode as supernovae. The more massive star, HD 5980A, is passing through a Luminous Blue Variable (LBV) phase — a short-lived, erratic stage that only the most massive stars go through. The most well-known LBV in our galaxy, Eta Carinae, produced a giant outburst that was recorded by astronomers in the 1840s. HD 5980A experienced a smaller-scale outburst that was seen in 1993-94. Its companion, HD 5980B, is an evolved Wolf-Rayet star that has already ejected much of its original envelope.

"It's interesting to be able to study an extragalactic colliding-wind binary like HD 5980 as if it were in our own galaxy", says Corcoran. "Colliding winds provide an important handle on how massive stars shed material. Being able to study them in external galaxies means we can study the effects of different compositions and environments on how these massive stars evolve. From the XMM-Newton data, we can study the delicate balance between the two winds, and determine the changing strength of the winds."

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMPYIO2UXE_index_0.html

More articles from Physics and Astronomy:

nachricht NASA'S OSIRIS-REx spacecraft slingshots past Earth
25.09.2017 | NASA/Goddard Space Flight Center

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

25.09.2017 | Health and Medicine

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>