Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New accelerator technique doubles particle energy in just one meter

16.02.2007
Imagine a car that accelerates from zero to 60 in 250 feet, and then rockets to 120 miles per hour in just one more inch.

That's essentially what a collaboration of more than a dozen accelerator physicists has accomplished, using electrons for their racecars and plasma for the afterburners. Because electrons already travel at near light's speed in an accelerator, the physicists actually doubled the energy of the electrons, not their speed.

The researchers-from the Department of Energy's Stanford Linear Accelerator Center (SLAC), the UCLA Henry Samueli School of Engineering and Applied Science and the University of Southern California Viterbi School of Engineering-published their work in the Feb. 15 issue of Nature.

The achievement demonstrates a technology that may drive the future of accelerator design. To reach the high energies required to answer the new set of mysteries confronting particle physics-such as dark energy and the origin of mass-the newest accelerators are vastly larger, and consequently more expensive, than their predecessors. Very high-energy particle beams will be needed to detect the very short-lived particles that have eluded scientists so far.

"We hope that someday these breakthroughs will make future generations of accelerators feasible and affordable," said SLAC Deputy Director Persis Drell, who is not an author of the Nature study. "It's wonderful to see the tremendous progress in understanding the underlying physics for fundamentally new methods of accelerating particles."

While still in early stages of development, the research shows that acceleration using plasma, or ionized gas, can dramatically boost the energy of particles in a short distance.

"The scale is pretty remarkable," said SLAC physicist and study co-author Mark Hogan. "You need an airplane to take a picture of the 2-mile linear accelerator here. Yet in a space shorter than the span of your arms, we doubled the electrons' energy to the highest ever made here. I hope in the long term it leads to extending the capabilities of existing and upcoming machines at modest costs."

The electrons first traveled 2 miles through the linear accelerator at SLAC, gaining 42 billion electron volts (GeV) of energy. Then they passed through a 33-inch long (84-centimeter) plasma chamber and picked up another 42 GeV of energy. Like an afterburner on a jet engine, the plasma provides extra thrust. The plasma chamber is filled with lithium gas. As the electron bunch passes through the lithium, the front of the bunch creates plasma. This plasma leaves a wake that flows to the back of the bunch and shoves it forward, giving electrons in the back more energy.

The experiment created one of the biggest acceleration gradients ever achieved. The gradient is a measure of how quickly particles amass energy. In this case, the electrons hurtling through the plasma chamber gained almost 1,000 times more energy per foot (or about 3,000 times more energy per meter) than usual in the accelerator.

The recent advance is the culmination of almost a decade of work, led by SLAC Professor Robert Siemann, UCLA electrical engineering Professor Chan Joshi and USC engineering Professor Thomas Katsouleas.

"Physicists use particle accelerators to answer some of the most profound questions about the nature of the universe," said Joshi. "I am hopeful that plasma acceleration will enable us to continue the rich tradition of discovery."

Said study co-author and USC engineering Professor Patric Muggli: "We are all heartened that we are continuing to climb the plasma acceleration learning curve."

A current experimental limitation is that most of the electrons in a bunch lose their energy to the plasma.

"We take energy out of one part of the beam and put it into another part," Hogan said.

During the last two years, the team has improved the plasma acceleration gradient by a factor of 200. One of the next steps is to attempt a two-bunch system, where the first bunch provides all the energy to the trailing bunch. In a full-scale plasma accelerator, physicists would use those second bunches to create high-energy particle collisions in their detectors.

Neil Calder | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>