Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New accelerator technique doubles particle energy in just one meter

16.02.2007
Imagine a car that accelerates from zero to 60 in 250 feet, and then rockets to 120 miles per hour in just one more inch.

That's essentially what a collaboration of more than a dozen accelerator physicists has accomplished, using electrons for their racecars and plasma for the afterburners. Because electrons already travel at near light's speed in an accelerator, the physicists actually doubled the energy of the electrons, not their speed.

The researchers-from the Department of Energy's Stanford Linear Accelerator Center (SLAC), the UCLA Henry Samueli School of Engineering and Applied Science and the University of Southern California Viterbi School of Engineering-published their work in the Feb. 15 issue of Nature.

The achievement demonstrates a technology that may drive the future of accelerator design. To reach the high energies required to answer the new set of mysteries confronting particle physics-such as dark energy and the origin of mass-the newest accelerators are vastly larger, and consequently more expensive, than their predecessors. Very high-energy particle beams will be needed to detect the very short-lived particles that have eluded scientists so far.

"We hope that someday these breakthroughs will make future generations of accelerators feasible and affordable," said SLAC Deputy Director Persis Drell, who is not an author of the Nature study. "It's wonderful to see the tremendous progress in understanding the underlying physics for fundamentally new methods of accelerating particles."

While still in early stages of development, the research shows that acceleration using plasma, or ionized gas, can dramatically boost the energy of particles in a short distance.

"The scale is pretty remarkable," said SLAC physicist and study co-author Mark Hogan. "You need an airplane to take a picture of the 2-mile linear accelerator here. Yet in a space shorter than the span of your arms, we doubled the electrons' energy to the highest ever made here. I hope in the long term it leads to extending the capabilities of existing and upcoming machines at modest costs."

The electrons first traveled 2 miles through the linear accelerator at SLAC, gaining 42 billion electron volts (GeV) of energy. Then they passed through a 33-inch long (84-centimeter) plasma chamber and picked up another 42 GeV of energy. Like an afterburner on a jet engine, the plasma provides extra thrust. The plasma chamber is filled with lithium gas. As the electron bunch passes through the lithium, the front of the bunch creates plasma. This plasma leaves a wake that flows to the back of the bunch and shoves it forward, giving electrons in the back more energy.

The experiment created one of the biggest acceleration gradients ever achieved. The gradient is a measure of how quickly particles amass energy. In this case, the electrons hurtling through the plasma chamber gained almost 1,000 times more energy per foot (or about 3,000 times more energy per meter) than usual in the accelerator.

The recent advance is the culmination of almost a decade of work, led by SLAC Professor Robert Siemann, UCLA electrical engineering Professor Chan Joshi and USC engineering Professor Thomas Katsouleas.

"Physicists use particle accelerators to answer some of the most profound questions about the nature of the universe," said Joshi. "I am hopeful that plasma acceleration will enable us to continue the rich tradition of discovery."

Said study co-author and USC engineering Professor Patric Muggli: "We are all heartened that we are continuing to climb the plasma acceleration learning curve."

A current experimental limitation is that most of the electrons in a bunch lose their energy to the plasma.

"We take energy out of one part of the beam and put it into another part," Hogan said.

During the last two years, the team has improved the plasma acceleration gradient by a factor of 200. One of the next steps is to attempt a two-bunch system, where the first bunch provides all the energy to the trailing bunch. In a full-scale plasma accelerator, physicists would use those second bunches to create high-energy particle collisions in their detectors.

Neil Calder | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>