Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New accelerator technique doubles particle energy in just one meter

16.02.2007
Imagine a car that accelerates from zero to 60 in 250 feet, and then rockets to 120 miles per hour in just one more inch.

That's essentially what a collaboration of more than a dozen accelerator physicists has accomplished, using electrons for their racecars and plasma for the afterburners. Because electrons already travel at near light's speed in an accelerator, the physicists actually doubled the energy of the electrons, not their speed.

The researchers-from the Department of Energy's Stanford Linear Accelerator Center (SLAC), the UCLA Henry Samueli School of Engineering and Applied Science and the University of Southern California Viterbi School of Engineering-published their work in the Feb. 15 issue of Nature.

The achievement demonstrates a technology that may drive the future of accelerator design. To reach the high energies required to answer the new set of mysteries confronting particle physics-such as dark energy and the origin of mass-the newest accelerators are vastly larger, and consequently more expensive, than their predecessors. Very high-energy particle beams will be needed to detect the very short-lived particles that have eluded scientists so far.

"We hope that someday these breakthroughs will make future generations of accelerators feasible and affordable," said SLAC Deputy Director Persis Drell, who is not an author of the Nature study. "It's wonderful to see the tremendous progress in understanding the underlying physics for fundamentally new methods of accelerating particles."

While still in early stages of development, the research shows that acceleration using plasma, or ionized gas, can dramatically boost the energy of particles in a short distance.

"The scale is pretty remarkable," said SLAC physicist and study co-author Mark Hogan. "You need an airplane to take a picture of the 2-mile linear accelerator here. Yet in a space shorter than the span of your arms, we doubled the electrons' energy to the highest ever made here. I hope in the long term it leads to extending the capabilities of existing and upcoming machines at modest costs."

The electrons first traveled 2 miles through the linear accelerator at SLAC, gaining 42 billion electron volts (GeV) of energy. Then they passed through a 33-inch long (84-centimeter) plasma chamber and picked up another 42 GeV of energy. Like an afterburner on a jet engine, the plasma provides extra thrust. The plasma chamber is filled with lithium gas. As the electron bunch passes through the lithium, the front of the bunch creates plasma. This plasma leaves a wake that flows to the back of the bunch and shoves it forward, giving electrons in the back more energy.

The experiment created one of the biggest acceleration gradients ever achieved. The gradient is a measure of how quickly particles amass energy. In this case, the electrons hurtling through the plasma chamber gained almost 1,000 times more energy per foot (or about 3,000 times more energy per meter) than usual in the accelerator.

The recent advance is the culmination of almost a decade of work, led by SLAC Professor Robert Siemann, UCLA electrical engineering Professor Chan Joshi and USC engineering Professor Thomas Katsouleas.

"Physicists use particle accelerators to answer some of the most profound questions about the nature of the universe," said Joshi. "I am hopeful that plasma acceleration will enable us to continue the rich tradition of discovery."

Said study co-author and USC engineering Professor Patric Muggli: "We are all heartened that we are continuing to climb the plasma acceleration learning curve."

A current experimental limitation is that most of the electrons in a bunch lose their energy to the plasma.

"We take energy out of one part of the beam and put it into another part," Hogan said.

During the last two years, the team has improved the plasma acceleration gradient by a factor of 200. One of the next steps is to attempt a two-bunch system, where the first bunch provides all the energy to the trailing bunch. In a full-scale plasma accelerator, physicists would use those second bunches to create high-energy particle collisions in their detectors.

Neil Calder | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>