Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists elucidate the origin of the darkest galaxies in the universe

16.02.2007
Ghostly galaxies composed almost entirely of dark matter speckle the universe. Unlike normal galaxies, these extreme systems contain very few stars and are almost devoid of gas.

Most of the luminous matter, so common in most galaxies, has been stripped away, leaving behind a dark matter shadow. These intriguing galaxies-known as dwarf spheroidals-are so faint that, although researchers believe they exist throughout the universe, only those relatively close to Earth have ever been observed. And until recently, no scientific model proposed to unravel their origin could simultaneously explain their exceptional dark matter content and their penchant for existing only in close proximity to much larger galaxies.

Now, Stelios Kazantzidis, a researcher at Stanford University's Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), in collaboration with Lucio Mayer of the Swiss Federal Institute of Technology in Zurich and the University of Zurich, Chiara Mastropietro of the University of Munich in Germany and James Wadsley of McMaster University in Canada, has developed an elegant explanation for how galaxies come to be dominated by dark matter. Kazantzidis, who completed part of the study as a fellow at the University of Chicago's Kavli Institute for Cosmological Physics, reports his findings in the Feb. 15 issue of Nature.

"These results are so exciting because they are based on a combination of physical effects that has never before been postulated," said Kazantzidis. "This is one step toward a more complete understanding of the formation of structure in the universe, which is one of the fundamental goals of astrophysics."

Using supercomputers to create novel simulations of galaxy formation, Kazantzidis and his collaborators found that a dark matter-dominated galaxy begins life as a normal system. But when it approaches a much more massive galaxy, it simultaneously encounters three environmental effects-"ram pressure," "tidal shocking" and the cosmic ultraviolet background-that transform it into a mere dark-matter shadow of its former self.

About 10 billion years ago, when the gas-rich progenitors of dark matter-dominated galaxies originally fell into the Milky Way, the universe was hot with a radiation called the cosmic ultraviolet background. As a small satellite galaxy traveled along its elliptical path around a more massive galaxy, called the host, this radiation made the gas within the smaller galaxy hotter. This state allowed ram pressure-a sort of "wind resistance" a galaxy feels as it speeds along its path-to strip away the gas within the satellite galaxy.

Simultaneously, as the satellite galaxy moved closer to the massive system, it encountered the overwhelming gravitational force of the much larger mass. This force wrenched luminous stars from the small galaxy. Over billions of years of evolution, the satellite passed by the massive galaxy several times as it traversed its orbital path. Each time its stars shook and the satellite lost some of them as a result of a mechanism called tidal shocking. These effects conspired to eventually strip away nearly all the luminous matter-gas and stars-and left behind only a dark-matter shadow of the original galaxy.

The dark matter, on the other hand, was nongaseous and therefore unaffected by the ram pressure force or the cosmic ultraviolet background, the scientists posit. It did experience tidal shocking, but this force alone was not strong enough to pull away a substantial amount of dark matter.

The numerical simulations conducted by Kazantzidis and his collaborators constitute the most extensive calculations ever performed on this topic, consuming up to two months of supercomputing time each at the University of Zurich, the Pittsburgh Supercomputing Center and elsewhere.

"Computer models of galaxy formation in the last decade or so have focused on modeling the properties of dark matter rather than those of the more familiar baryonic [luminous] matter," said co-author Mayer. "Instead, our work suggests that we cannot understand the origin of galaxies without modeling the detailed physics of baryonic matter, even in a dark matter-dominated universe."

The scientists say this new understanding of the origin of the darkest galaxies in the universe may soon lead to fundamental insights into the nature of dark matter.

"Elucidating the nature of dark matter is one of the grandest challenges of modern cosmology," said Kazantzidis. "In the next several years, numerous experiments will attempt to detect dark matter using dwarf spheroidal galaxies as targets." Kazantzidis' work will benefit these studies by offering a better explanation of the origin of ghostly galaxies.

Mystery of the missing satellites

Additionally, the work may help to explain a long-standing discrepancy between theory and observation. The leading modern cosmological model, Lambda Cold Dark Matter ((CDM), predicts that many more small galaxies surround massive galaxies like the Milky Way and Andromeda than are currently observed. This mismatch, which is often referred to as the "missing satellites problem," has been traditionally regarded as one of the toughest challenges to the (CDM paradigm. Kazantzidis' work suggests that the process by which small galaxies are stripped of their luminous matter is common, and implies that the "missing" galaxies could exist in the form of dark matter-dominated satellites.

"These galaxies could just be too dark to detect," he said. "But their possible existence will substantially alleviate the missing satellites problem with profound implications for the predictive power of the (CDM theory." Coincidentally, in the last few months, one of the most advanced observational programs ever undertaken, the Sloan Digital Sky Survey, has revealed in the vicinity of the Milky Way a number of what appear to be ultra-faint satellite galaxies. If this finding is confirmed by follow-up observations and analysis, these newly discovered systems would be explained by Kazantzidis' calculations and would contribute to solving the long-standing missing satellites problem, he says.

Neil Calder | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>