Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-thin Filter, 50 Atoms Thick, Sorts Individual Molecules

16.02.2007
Design Opens Possibility for Better Dialysis, Fuel Cells, Neuro-Stem Cell Cultivation

A newly designed porous membrane, so thin it's invisible edge-on, may revolutionize the way doctors and scientists manipulate objects as small as a molecule.

The 50-atom thick filter can withstand surprisingly high pressures and may be a key to better separation of blood proteins for dialysis patients, speeding ion exchange in fuel cells, creating a new environment for growing neurological stem cells, and purifying air and water in hospitals and clean-rooms at the nanoscopic level.

At more than 4,000 times thinner than a human hair, the new barely-there membrane is thousands of times thinner than similar filters in use today.

Details on the membrane, developed at the University of Rochester, appear in today's issue of the journal Nature.

"It's amazing, we have a material as thin as some of the molecules it's sorting, and even riddled with holes, but can withstand enough pressure to make real-world nano-filtering a practical reality," says research associate Christopher Striemer, co-creator of the membrane. "That ultra-thinness means much higher efficiency and lower sample loss, so we can do things that can't normally be done with current materials."

The membrane is a 15-nanometer-thick slice of the same silicon that's used every day in computer-chip manufacturing. In the lab of Philippe Fauchet, professor of electrical and computer engineering at the University, Striemer discovered the membrane as he was looking for a way to better understand how silicon crystallizes when heated.

He used such a thin piece of silicon "only about 50 atoms thick" because it would allow him to use an electron microscope to see the crystal structure in his samples, formed with different heat treatments.

Striemer found that as parts of the silicon contracted into crystals, holes opened up in their wakes. Imagine a party of people spread out evenly throughout a room, but as the evening progresses and people huddle into cliques, scattered areas of empty floor open up.

In talks with Striemer and Fauchet, James L. McGrath, assistant professor of biomedical engineering, and his graduate student, Tom Gaborski, realized that since the membrane's holes were only nanometers in size, it might be possible to separate objects as small as proteins much more effectively than is being done now.

Current molecular-level filters use a polymer-based design that is a jumble of varying holes and tunnels. The sizes of holes in the polymer model vary greatly, and since its "holes" are really convoluted tunnels through the material, they require much more time for proteins to pass through, and they are prone to clogging.

Recently, researchers had tried to design an ideal filter by drilling holes into a thin slice of another silicon-based material with an ion beam. While the effort did result in a filter with regular holes, the process was too laborious to be cost effective, and its membrane was so brittle that it required an elaborate support structure to prevent it from shattering.

While McGrath knew he might have the exact filter researchers have been searching for, he needed to test if the predictions held up. "When you build something at this scale, you're closing in on the quantum world and you never know what the properties are going to be," he says.

When Striemer tested his design, he found that the same 50-atom thickness could hold back an astonishing 15 pounds per square inch of pressure.

To test the membrane, Gaborski placed a solution of two blood proteins, albumin and IgG, behind the membrane and forced it gently through the nanoscopic holes. In just over six minutes, the albumin had passed through, but the larger IgG protein was stopped.

And as if filtering by nanoscale size weren't enough, the Rochester team has found a way for the nano-filter to carry a fixed charge, effectively making the hole "smaller" for molecules of a certain charge than for others. In a single filter it's now possible to quickly and easily separate molecules by their size and their charge a serious boon for fuel cell researchers, who wish to move only certain ions from one part of a fuel cell to another.

Separating molecules by size and charge efficiently is also the goal of kidney dialysis researchers. Johnson & Johnson recently gave the Rochester team a $100,000 grant to pursue developing the membrane's use in separating blood proteins with the hope of creating a more efficient method of dialysis.

"Its potential applications to neuroscience, cell biology and medical research may be profound."

"Kidneys do a much better job than dialysis machines of filtering blood proteins and keeping the ones you need, like albumin, and getting rid of toxins, which in some cases are smaller proteins," says McGrath. "They use a type of cellulose or plastic membrane with relatively poor discrimination. We think we can engineer these membranes to provide superior discrimination of proteins, which may make the process of dialysis faster and more effective than it is today."

The Rochester group sees many more applications for the membrane in the future. One of the most intriguing ideas is that it may play a role in growing neurons from stem cells.

Steve Goldman, Glenn-Zutes Chair in Biology of the Aging Brain and professor of neurology at the University of Rochester, discussed the technology with McGrath and colleagues and was impressed. "It's a spectacularly interesting technology, that opens a realm of new possibilities in fields as diverse as organ reconstitution, proteomics and microfluidics," says Goldman. "Its potential applications to neuroscience, cell biology and medical research may be profound."

Recent evidence suggests that neurological stem cells may grow better when in the immediate vicinity of certain "helper" cells. A problem arises after the new neurons are grown, when scientists need to separate the neurons from these helper cells. McGrath suggests that the neurological stem cells can be adhered to one side of the membrane, and the helper cells on the other.

The silicon membrane is about the thickness of the cell's own membranes, meaning the two groups of cells can actually touch each other through the membrane's pores without passing through themselves. The chemical communication between the helper and stem cells can continue as if the two sets of cells were in direct contact, but after the neurons are fully formed, they can easily be separated from the helper cells.

The Rochester team is working to realize the potential of the membrane by refining its fabrication. Striemer found he could "tune" the size of the filter holes depending on the temperature to which the silicon is heated, but the process is not yet accurate enough for engineers to simply select any pore size and fabricate it.

The researchers have just founded a company, SiMPore, to commercialize the numerous applications of the nanomembrane. Many of the University's laboratories will be involved in testing and developing the membrane, and the founders have already been approached by semiconductor giants such as Intel to see if the filter could remove nanoparticles from solutions used in microchip-manufacturing.

The team is currently testing the membranes to see how they stand up to regular wear and tear, and how resistant they are to clogging, which is a chief problem with conventional filters.

About the University of Rochester

The University of Rochester (www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College of Arts, Sciences, and Engineering is complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, and Schools of Medicine and Nursing.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>