Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-thin Filter, 50 Atoms Thick, Sorts Individual Molecules

16.02.2007
Design Opens Possibility for Better Dialysis, Fuel Cells, Neuro-Stem Cell Cultivation

A newly designed porous membrane, so thin it's invisible edge-on, may revolutionize the way doctors and scientists manipulate objects as small as a molecule.

The 50-atom thick filter can withstand surprisingly high pressures and may be a key to better separation of blood proteins for dialysis patients, speeding ion exchange in fuel cells, creating a new environment for growing neurological stem cells, and purifying air and water in hospitals and clean-rooms at the nanoscopic level.

At more than 4,000 times thinner than a human hair, the new barely-there membrane is thousands of times thinner than similar filters in use today.

Details on the membrane, developed at the University of Rochester, appear in today's issue of the journal Nature.

"It's amazing, we have a material as thin as some of the molecules it's sorting, and even riddled with holes, but can withstand enough pressure to make real-world nano-filtering a practical reality," says research associate Christopher Striemer, co-creator of the membrane. "That ultra-thinness means much higher efficiency and lower sample loss, so we can do things that can't normally be done with current materials."

The membrane is a 15-nanometer-thick slice of the same silicon that's used every day in computer-chip manufacturing. In the lab of Philippe Fauchet, professor of electrical and computer engineering at the University, Striemer discovered the membrane as he was looking for a way to better understand how silicon crystallizes when heated.

He used such a thin piece of silicon "only about 50 atoms thick" because it would allow him to use an electron microscope to see the crystal structure in his samples, formed with different heat treatments.

Striemer found that as parts of the silicon contracted into crystals, holes opened up in their wakes. Imagine a party of people spread out evenly throughout a room, but as the evening progresses and people huddle into cliques, scattered areas of empty floor open up.

In talks with Striemer and Fauchet, James L. McGrath, assistant professor of biomedical engineering, and his graduate student, Tom Gaborski, realized that since the membrane's holes were only nanometers in size, it might be possible to separate objects as small as proteins much more effectively than is being done now.

Current molecular-level filters use a polymer-based design that is a jumble of varying holes and tunnels. The sizes of holes in the polymer model vary greatly, and since its "holes" are really convoluted tunnels through the material, they require much more time for proteins to pass through, and they are prone to clogging.

Recently, researchers had tried to design an ideal filter by drilling holes into a thin slice of another silicon-based material with an ion beam. While the effort did result in a filter with regular holes, the process was too laborious to be cost effective, and its membrane was so brittle that it required an elaborate support structure to prevent it from shattering.

While McGrath knew he might have the exact filter researchers have been searching for, he needed to test if the predictions held up. "When you build something at this scale, you're closing in on the quantum world and you never know what the properties are going to be," he says.

When Striemer tested his design, he found that the same 50-atom thickness could hold back an astonishing 15 pounds per square inch of pressure.

To test the membrane, Gaborski placed a solution of two blood proteins, albumin and IgG, behind the membrane and forced it gently through the nanoscopic holes. In just over six minutes, the albumin had passed through, but the larger IgG protein was stopped.

And as if filtering by nanoscale size weren't enough, the Rochester team has found a way for the nano-filter to carry a fixed charge, effectively making the hole "smaller" for molecules of a certain charge than for others. In a single filter it's now possible to quickly and easily separate molecules by their size and their charge a serious boon for fuel cell researchers, who wish to move only certain ions from one part of a fuel cell to another.

Separating molecules by size and charge efficiently is also the goal of kidney dialysis researchers. Johnson & Johnson recently gave the Rochester team a $100,000 grant to pursue developing the membrane's use in separating blood proteins with the hope of creating a more efficient method of dialysis.

"Its potential applications to neuroscience, cell biology and medical research may be profound."

"Kidneys do a much better job than dialysis machines of filtering blood proteins and keeping the ones you need, like albumin, and getting rid of toxins, which in some cases are smaller proteins," says McGrath. "They use a type of cellulose or plastic membrane with relatively poor discrimination. We think we can engineer these membranes to provide superior discrimination of proteins, which may make the process of dialysis faster and more effective than it is today."

The Rochester group sees many more applications for the membrane in the future. One of the most intriguing ideas is that it may play a role in growing neurons from stem cells.

Steve Goldman, Glenn-Zutes Chair in Biology of the Aging Brain and professor of neurology at the University of Rochester, discussed the technology with McGrath and colleagues and was impressed. "It's a spectacularly interesting technology, that opens a realm of new possibilities in fields as diverse as organ reconstitution, proteomics and microfluidics," says Goldman. "Its potential applications to neuroscience, cell biology and medical research may be profound."

Recent evidence suggests that neurological stem cells may grow better when in the immediate vicinity of certain "helper" cells. A problem arises after the new neurons are grown, when scientists need to separate the neurons from these helper cells. McGrath suggests that the neurological stem cells can be adhered to one side of the membrane, and the helper cells on the other.

The silicon membrane is about the thickness of the cell's own membranes, meaning the two groups of cells can actually touch each other through the membrane's pores without passing through themselves. The chemical communication between the helper and stem cells can continue as if the two sets of cells were in direct contact, but after the neurons are fully formed, they can easily be separated from the helper cells.

The Rochester team is working to realize the potential of the membrane by refining its fabrication. Striemer found he could "tune" the size of the filter holes depending on the temperature to which the silicon is heated, but the process is not yet accurate enough for engineers to simply select any pore size and fabricate it.

The researchers have just founded a company, SiMPore, to commercialize the numerous applications of the nanomembrane. Many of the University's laboratories will be involved in testing and developing the membrane, and the founders have already been approached by semiconductor giants such as Intel to see if the filter could remove nanoparticles from solutions used in microchip-manufacturing.

The team is currently testing the membranes to see how they stand up to regular wear and tear, and how resistant they are to clogging, which is a chief problem with conventional filters.

About the University of Rochester

The University of Rochester (www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College of Arts, Sciences, and Engineering is complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, and Schools of Medicine and Nursing.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>