Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Introducing the “coolest” spacecraft in the Universe UK involvement in ESA’s Planck mission

12.02.2007
The European Space Agency’s (ESA) Planck mission, which will study the conditions present in our Universe shortly after the Big Bang, is reaching an important milestone with the integration of instruments into the satellite at Alcatel Alenia Space in Cannes, France.

Professor Keith Mason, Chief Executive Officer of the Particle Physics and Astronomy Research Council (PPARC), who fund the UK involvement in the mission, said, “Planck presents a tremendous opportunity to further our knowledge and understanding of the parameters that control the functioning of our Universe. The integration of the instruments into the spacecraft is a significant milestone that marks a major step towards launch next year.”

Planck will travel back to the dawn of time to investigate with the highest precision ever the cosmic microwave background (CMB) – the remnants of the radiation that filled the Universe immediately after the Big Bang some 14 billion years ago. Planck will be sensitive to temperature variations of a few millionths of a degree and will map the full sky in nine wavelengths. The tiny differences in the CMB are like the marks in a fossil, revealing details about the organism they come from – in this case, the physical processes at the beginning of the Universe.

The mission will address a number of fundamental questions, such as the initial conditions for the evolution of our Universe’s structure, the nature and amount of dark matter and the nature of dark energy and the expansion of the Universe itself.

Planck involves an international collaboration of scientists and industrialists from around the World. UK scientists from the University of Cambridge, Cardiff University, Imperial College London, University of Manchester, Jodrell Bank and Rutherford Appleton Laboratory have key roles – with involvement in the planning of the mission as well as building hardware for the sensitive instruments onboard, the data analysis and the science operations after launch.

Professor George Efstathiou, a member of the Planck science team and co-investigator on the High Frequency instrument (HFI) on Planck, from the University of Cambridge said, “The accuracy of the instruments on board Planck will allow us to measure the temperature variations across the cosmic microwave background with much better sensitivity than ever before providing astronomers with an unprecedented view of our Universe when it was extremely young – just 300,000 years old.”

Planck carries a 1.5 metre diameter telescope that feeds the microwave radiation to two instruments which will image the sky at different frequencies:- the Low Frequency Instrument (LFI) consisting of an array of ultra sensitive radiometers and the High Frequency Instrument (HFI), an array of highly sensitive microwave detectors known as bolometers.

The conditions that Planck will be studying present real challenges when it comes to the technological requirements of the instruments onboard. In order to achieve its science objectives, Planck’s detectors have to operate at very low and stable temperatures. The spacecraft is equipped with a sophisticated cryogenic cooling system which cools the instruments to levels close to absolute zero (-273.15 degrees C), ranging from -253 degrees Celsius to only a tenth of a degree above absolute zero.

Dr Tom Bradshaw from CCLRC’s Rutherford Appleton Laboratory works on the cooling system developed for the High Frequency Instrument. He comments, “Planck presents real technological challenges with regard to the temperatures that the instruments need to operate at. The spacecraft has a layered cooling system, akin to a Russian doll, which keeps the instruments cooled so that their own heat does not interfere with the science measurements.”

After integration which is due to be completed by the end of February, Planck will move to Liege in Belgium to undergo a series of tests to measure the performance of the instruments at extreme temperatures. Planck is scheduled to be launched on 31st July 2008 on an Ariane 5 rocket from Kourou in French Guiana. It will be launched in a dual configuration with Herschel, ESA’s mission to study the formation of galaxies, stars and planetary systems in the infrared. Once operational both missions will study different aspects of the “cold” cosmos providing complimentary information on previously unknown regions of the Universe.

Planck will build on the heritage of previous NASA CMB missions – Cosmic Background Explorer (COBE) and Wilkinson Map Anisotropy Probe (WMAP) - the latter of which is still operating. Professor George Smoot, lead scientist for COBE, who was awarded the 2006 Nobel Prize for Physics for his work on cosmic microwave background, is a co-investigator on Planck.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>