Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's largest space telescope mirror will see deeper into space

09.02.2007
When scientists are looking into space, the more they can see, the easier it is to piece together the puzzle of the cosmos. The James Webb Space Telescope's mirror blanks have now been constructed. When polished and assembled, together they will form a mirror whose area is over seven times larger than the Hubble Telescope's mirror.

A telescope's sensitivity, or how much detail it can see, is directly related to the size of the mirror area that collects light from the cosmos. A larger area collects more light to see deeper into space, just like a larger bucket collects more water in a rain shower than a small one. The larger mirror also means the James Webb Space Telescope (JWST) will have excellent resolution. That's why the telescope's mirror is made up of 18 mirror segments that form a total area of 25 square-meters (almost 30 square yards) when they all come together.

The challenge was to make the mirrors lightweight for launch, but nearly distortion-free for excellent image quality. That challenge has been met by AXSYS Technologies., Inc., Cullman, Ala. "From the start, AXSYS Technologies has been a key player in the mirror technology development effort," said Kevin Russell, mirror development lead at NASA's Marshall Spaceflight Center, Huntsville, Ala.

If the mirror were assembled completely and fully opened on the ground, there would be no way to fit it into a rocket. Therefore, the Webb Telescope's 18 mirror segments must be set into place when the telescope is in space. Engineers solved this problem by allowing the segmented mirror to fold, like the leaves of a drop-leaf table.

Each of the 18 mirrors will have the ability to be moved individually, so that they can be aligned together to act as a single large mirror. Scientists and engineers can also correct for any imperfections after the telescope opens in space, or if any changes occur in the mirror during the life of the mission. Each segment is made of beryllium, one of the lightest of all metals known to man. Beryllium has been used in other space telescopes and has worked well at the super-frigid temperatures of space in which the telescope will operate.

Each of the hexagonal-shaped mirror segments is 1.3 meters (4.26 feet) in diameter, and weighs approximately 20 kilograms or 46 pounds. The completed primary mirror will be over 2.5 times larger than the diameter of the Hubble Space Telescope's primary mirror, which is 2.4 meters in diameter, but will weigh roughly half as much.

"The James Webb Space Telescope will collect light approximately 9 times faster than the Hubble Space Telescope when one takes into account the details of the relative mirror sizes, shapes, and features in each design," said Eric Smith, JWST program scientist at NASA Headquarters, Washington. The increased sensitivity will allow scientists to see back to when the first galaxies formed just after the Big Bang. The larger telescope will have advantages for all aspects of astronomy and will revolutionize studies of how stars and planetary systems form and evolve.

The 18 mirrors have now been shipped to L-3 Communications SSG-Tinsley, Richmond, Calif. where they can be ground and polished.

After the grinding and polishing, the mirror segments will be delivered to Ball Aerospace in small groups where they will be assembled. Once the mirrors are completed, they will go to NASA's Goddard Space Flight Center, Greenbelt, Md., for final assembly on the telescope.

Upon successful launch in 2013, JWST will study the first stars and galaxies following the Big Bang.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>