Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's largest space telescope mirror will see deeper into space

09.02.2007
When scientists are looking into space, the more they can see, the easier it is to piece together the puzzle of the cosmos. The James Webb Space Telescope's mirror blanks have now been constructed. When polished and assembled, together they will form a mirror whose area is over seven times larger than the Hubble Telescope's mirror.

A telescope's sensitivity, or how much detail it can see, is directly related to the size of the mirror area that collects light from the cosmos. A larger area collects more light to see deeper into space, just like a larger bucket collects more water in a rain shower than a small one. The larger mirror also means the James Webb Space Telescope (JWST) will have excellent resolution. That's why the telescope's mirror is made up of 18 mirror segments that form a total area of 25 square-meters (almost 30 square yards) when they all come together.

The challenge was to make the mirrors lightweight for launch, but nearly distortion-free for excellent image quality. That challenge has been met by AXSYS Technologies., Inc., Cullman, Ala. "From the start, AXSYS Technologies has been a key player in the mirror technology development effort," said Kevin Russell, mirror development lead at NASA's Marshall Spaceflight Center, Huntsville, Ala.

If the mirror were assembled completely and fully opened on the ground, there would be no way to fit it into a rocket. Therefore, the Webb Telescope's 18 mirror segments must be set into place when the telescope is in space. Engineers solved this problem by allowing the segmented mirror to fold, like the leaves of a drop-leaf table.

Each of the 18 mirrors will have the ability to be moved individually, so that they can be aligned together to act as a single large mirror. Scientists and engineers can also correct for any imperfections after the telescope opens in space, or if any changes occur in the mirror during the life of the mission. Each segment is made of beryllium, one of the lightest of all metals known to man. Beryllium has been used in other space telescopes and has worked well at the super-frigid temperatures of space in which the telescope will operate.

Each of the hexagonal-shaped mirror segments is 1.3 meters (4.26 feet) in diameter, and weighs approximately 20 kilograms or 46 pounds. The completed primary mirror will be over 2.5 times larger than the diameter of the Hubble Space Telescope's primary mirror, which is 2.4 meters in diameter, but will weigh roughly half as much.

"The James Webb Space Telescope will collect light approximately 9 times faster than the Hubble Space Telescope when one takes into account the details of the relative mirror sizes, shapes, and features in each design," said Eric Smith, JWST program scientist at NASA Headquarters, Washington. The increased sensitivity will allow scientists to see back to when the first galaxies formed just after the Big Bang. The larger telescope will have advantages for all aspects of astronomy and will revolutionize studies of how stars and planetary systems form and evolve.

The 18 mirrors have now been shipped to L-3 Communications SSG-Tinsley, Richmond, Calif. where they can be ground and polished.

After the grinding and polishing, the mirror segments will be delivered to Ball Aerospace in small groups where they will be assembled. Once the mirrors are completed, they will go to NASA's Goddard Space Flight Center, Greenbelt, Md., for final assembly on the telescope.

Upon successful launch in 2013, JWST will study the first stars and galaxies following the Big Bang.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>