Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Explosions in the Distant Universe

09.02.2007
Long duration gamma-ray bursts (GRBs), first discovered in the 1970s, are the most explosive events in the Universe. Finding out what happens during these cataclysmic events is a major challenge, partly because they usually occur at the edge of the visible Universe and partly because the bursts last only a matter of seconds.

Observations accumulated over the last decade have led to a consensus that at least some GRBs mark the death throes of a giant star as its core collapses to form a black hole. Until now, it has generally been thought that the black hole ejects a jet of plasma (extremely hot gas) which is blasted outwards at close to the speed of light.

This theory is called into question by a new study led by Pawan Kumar from the University of Texas. The work has been accepted for publication in the journal, ‘Monthly Notices of the Royal Astronomical Society’.

MAGNETIC OUTFLOW

Scientists have long speculated that the gamma-ray emission we see comes from fluctuations in the speed of the ejected material. The faster and slower ejecta collide, producing shocks in the jet which result in the emission of gamma-rays. Although this internal shock model is the standard explanation, it relies on the jet consisting of ordinary matter -- the same sort of material that we are made from -- or what scientists call baryons.

Now, however, Pawan Kumar and colleagues have cast doubt on this model. Instead of the GRBs being generated by internal shocks, Kumar’s team finds that the jet is actually a powerful magnetic outflow which transports huge amounts of energy away from the collapsed star.

Using data from the Swift satellite, Professor Kumar’s team has analysed a sample of 10 gamma-ray bursts that were recorded between January 2005 and May 2006. In each case, Swift collected gamma-ray, X-ray and optical light immediately after the explosions were detected. Such multi-wavelength observations are essential if the researchers are to understand what happens after the brief burst fades and the source object is only visible in X-rays or visible light.

“Swift is uniquely capable of such simultaneous multi-wavelength observations,” said Neil Gehrels of NASA’s Goddard Space Flight Center, Principal Investigator for the Swift satellite.

The new study reveals the physical process responsible for the generation of gamma-ray radiation and the distance from the black hole where this radiation is produced.

"The gamma-ray source is located about 10 billion km from the black hole, or 100 times further than previously thought,” said Professor Kumar. “This and several other lines of evidence put forward in our work suggest that the outflow is dominated by the magnetic field.”

The data indicate that a magnetic jet decays into gamma-rays. The subsequent interaction (of the jet) with the surrounding gas causes intense heating and this produces an afterglow that is seen at X-ray and visible light wavelengths.

Dr. Paul O’Brien from the University of Leicester, a co-investigator on the project, said, “In just a few seconds gamma-ray bursts emit as much energy as the Sun does in 10 billion years. The Swift observations are telling us that this emission is due to an outflow in which magnetic fields transport the energy. If confirmed, this will alter our view of how these objects work.”

“Using the Swift data we can accurately measure the times when the prompt emission stops and the afterglow becomes visible,” said Richard Willingale, also from the University of Leicester. “These times constrain the distance of the emitting region from the black hole and hence the physical processes involved.”

Since its launch on 20 November 2004, Swift has observed over 200 gamma-ray bursts and provides prompt data on almost all of them.

“Swift can turn and observe a gamma-ray burst with its X-ray and optical telescopes in just a few tens of seconds,” said Professor David Burrows from Pennsylvania State University, lead investigator for the X-ray telescope on Swift. “This capability allows us to capture a snapshot of the early emission which carries information on the physical processes involved.”

Dr Silvia Zane, from the Mullard Space Science Laboratory said, “This is going to revolutionise our understanding of the cause of such explosions.”

Peter Bond | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>