Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In tiny supercooled clouds, physicists exchange light and matter

08.02.2007
Technique may give scientists a new degree of control over fiber-optic communication and quantum information processing

Physicists have for the first time stopped and extinguished a light pulse in one part of space and then revived it in a completely separate location. They accomplished this feat by completely converting the light pulse into matter that travels between the two locations and is subsequently changed back to light.

Matter, unlike light, can easily be manipulated, and the experiments provide a powerful means to control optical information. The findings, published this week by Harvard University researchers in the journal Nature, could present an entirely new way for scientists and engineers to manipulate the light pulses used in fiber-optic communications, the technology at the heart of our highly networked society.

"We demonstrate that we can stop a light pulse in a supercooled sodium cloud, store the data contained within it, and totally extinguish it, only to reincarnate the pulse in another cloud two-tenths of a millimeter away," says Lene Vestergaard Hau, Mallinckrodt Professor of Physics and of Applied Physics in Harvard's Faculty of Arts and Sciences and School of Engineering and Applied Sciences.

Hau and her co-authors, Naomi S. Ginsberg and Sean R. Garner, found that the light pulse can be revived, and its information transferred between the two clouds of sodium atoms, by converting the original optical pulse into a traveling matter wave which is an exact matter copy of the original pulse, traveling at a leisurely 200 meters per hour. The matter pulse is readily converted back into light when it enters the second of the supercooled clouds -- known as Bose-Einstein condensates -- and is illuminated with a control laser.

"The Bose-Einstein condensates are very important to this work because within these clouds atoms become phase-locked, losing their individuality and independence," Hau says. "The lock-step nature of atoms in a Bose-Einstein condensate makes it possible for the information in the initial light pulse to be replicated exactly within the second cloud of sodium atoms, where the atoms collaborate to revive the light pulse."

Within a Bose-Einstein condensate -- a cloud of sodium atoms cooled to just billionths of a degree above absolute zero -- a light pulse is spatially compressed by a factor of 50 million. The light drives a controllable number of the condensate's roughly 1.8 million sodium atoms to enter into quantum superposition states with a lower-energy component that stays put and a higher-energy component that travels between the two Bose-Einstein condensates. The amplitude and phase of the light pulse stopped and extinguished in the first cloud are imprinted in this traveling component and transferred to the second cloud, where the recaptured information can recreate the original light pulse.

The period of time when the light pulse becomes matter, and the matter pulse is isolated in space between the condensate clouds, could offer scientists and engineers a tantalizing new window for controlling and manipulating optical information; researchers cannot now readily control optical information during its journey, except to amplify the signal to avoid fading. The new work by Hau and her colleagues marks the first successful manipulation of coherent optical information.

"This work could provide a missing link in the control of optical information," Hau says. "While the matter is traveling between the two Bose-Einstein condensates, we can trap it, potentially for minutes, and reshape it -- change it -- in whatever way we want. This novel form of quantum control could also have applications in the developing fields of quantum information processing and quantum cryptography."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>