Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In tiny supercooled clouds, physicists exchange light and matter

08.02.2007
Technique may give scientists a new degree of control over fiber-optic communication and quantum information processing

Physicists have for the first time stopped and extinguished a light pulse in one part of space and then revived it in a completely separate location. They accomplished this feat by completely converting the light pulse into matter that travels between the two locations and is subsequently changed back to light.

Matter, unlike light, can easily be manipulated, and the experiments provide a powerful means to control optical information. The findings, published this week by Harvard University researchers in the journal Nature, could present an entirely new way for scientists and engineers to manipulate the light pulses used in fiber-optic communications, the technology at the heart of our highly networked society.

"We demonstrate that we can stop a light pulse in a supercooled sodium cloud, store the data contained within it, and totally extinguish it, only to reincarnate the pulse in another cloud two-tenths of a millimeter away," says Lene Vestergaard Hau, Mallinckrodt Professor of Physics and of Applied Physics in Harvard's Faculty of Arts and Sciences and School of Engineering and Applied Sciences.

Hau and her co-authors, Naomi S. Ginsberg and Sean R. Garner, found that the light pulse can be revived, and its information transferred between the two clouds of sodium atoms, by converting the original optical pulse into a traveling matter wave which is an exact matter copy of the original pulse, traveling at a leisurely 200 meters per hour. The matter pulse is readily converted back into light when it enters the second of the supercooled clouds -- known as Bose-Einstein condensates -- and is illuminated with a control laser.

"The Bose-Einstein condensates are very important to this work because within these clouds atoms become phase-locked, losing their individuality and independence," Hau says. "The lock-step nature of atoms in a Bose-Einstein condensate makes it possible for the information in the initial light pulse to be replicated exactly within the second cloud of sodium atoms, where the atoms collaborate to revive the light pulse."

Within a Bose-Einstein condensate -- a cloud of sodium atoms cooled to just billionths of a degree above absolute zero -- a light pulse is spatially compressed by a factor of 50 million. The light drives a controllable number of the condensate's roughly 1.8 million sodium atoms to enter into quantum superposition states with a lower-energy component that stays put and a higher-energy component that travels between the two Bose-Einstein condensates. The amplitude and phase of the light pulse stopped and extinguished in the first cloud are imprinted in this traveling component and transferred to the second cloud, where the recaptured information can recreate the original light pulse.

The period of time when the light pulse becomes matter, and the matter pulse is isolated in space between the condensate clouds, could offer scientists and engineers a tantalizing new window for controlling and manipulating optical information; researchers cannot now readily control optical information during its journey, except to amplify the signal to avoid fading. The new work by Hau and her colleagues marks the first successful manipulation of coherent optical information.

"This work could provide a missing link in the control of optical information," Hau says. "While the matter is traveling between the two Bose-Einstein condensates, we can trap it, potentially for minutes, and reshape it -- change it -- in whatever way we want. This novel form of quantum control could also have applications in the developing fields of quantum information processing and quantum cryptography."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>