Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universe contains more calcium than expected

07.02.2007
The universe contains one and a half times more calcium than previously assumed. This conclusion was drawn by astronomers of the SRON Netherlands Institute for Space Research, after observations with ESA's XMM-Newton X-ray observatory.

This research offers scientists new insights in the formation history of the elemental building blocks of the cosmos in which supernovae play a crucial role.

The iron in our blood, the oxygen we breathe, the calcium in our bones, the silicon in the sand box, all the atoms we are made of are released during the violent final moments of massive stars in the act of dying. These so-called supernova explosions eject newly made chemical elements into space where they become the building blocks for new stars, planets, or even life. However, many questions concerning the very formation of elements and the way they get distributed across the universe still remain open.

According to Jelle de Plaa, space researcher at SRON, many answers can be found in distant clusters of galaxies. "Clusters are in many ways the big cities of the universe", he says.

"They consist of hundreds of galaxies, each containing thousands of millions of stars. The galaxies are embedded in a gigantic cloud of hot gas that fills this cluster like a smog. Due to their enormous size and numbers, clusters contain a large fraction of the total amount of matter in the universe. During the past thousand-millions of years supernova explosions have enriched the surrounding hot gas with heavier elements, like oxygen, silicon and iron."

Using XMM-Newton, De Plaa determined the abundances of oxygen, neon, silicon, sulphur, argon, calcium, iron and nickel in 22 clusters of galaxies. In total he saw the 'pollution' produced by about 100 thousand million supernovae. When he compared the measured amounts of elements in the clusters with theoretical models of supernovae, the calcium abundance measured thanks to XMM-Newton appeared to be one and a half times higher than theoreticians previously assumed.

Dance of death

De Plaa and his colleagues also found that many supernovae in clusters are the result of a dance of death between two stars that revolve around each other. A very compact white dwarf withdraws matter from its unfortunate companion star. The matter forms a layer on the surface of the white dwarf. When the dwarf reaches a certain mass, its core cannot any longer support the weight of the matter and explodes as a supernova.

"Roughly half of the number of supernovae that ever exploded in clusters appear to have exploded this way", says De Plaa. "This is much more than the fraction of this kind of supernovae in our own galaxy, which we estimate to be 15 percent."

The results will be valuable for the scientists who make supernova models. "Until now, supernova experts had to make educated guesses about how a supernova exactly explodes," continues De Plaa. "Because we measure the remains of 100 thousand million supernovae at once, we find more accurate averages than before. This will help the supernova community to learn how white dwarfs die."

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMMMC4ENXE_index_0.html

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>