Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny 'gas-flow' sensor has industrial, environmental applications

06.02.2007
Researchers at Purdue University have shown how to create a new class of tiny sensors for applications ranging from environmental protection to pharmaceutical preservation.

Although similar "gas-flow sensors" are currently being used for a variety of industries, the new sensor is the first that works on the scale of micrometers and nanometers, or millionths and billionths of a meter, respectively, said Steven Wereley, an associate professor of mechanical engineering.

Gas-flow sensors currently used, including those in residential gas meters to determine how much to charge customers, operate on a principle known for at least 100 years. According to that principle, as gas flows over a surface, such as the wall of a pipe or an object flying through the air, molecules of gas nearest the surface remain stationary. The molecules farther away from the surface move progressively faster.

"That model works really well in many situations, including aerodynamics and applications where the scale of the flow is large compared to the size of the molecules," Wereley said.

This principle, however, does not apply to gas flowing through channels on the scale of micrometers or nanometers, meaning ordinary designs will not work for sensors needed for applications on those scales. In such applications, gas molecules immediately adjacent to the wall of a tube do flow and are said to "slip."

"This exception to the model carries important design implications," Wereley said.

Findings will be detailed in a research paper to be published in the February issue of the Journal of Micromechanics and Microengineering. The paper was written by Wereley and Jaesung Jang, a postdoctoral research associate in Purdue's School of Electrical and Computer Engineering.

The paper describes how the sensor is designed.

As gas flows through a tiny channel, some of it is diverted into a reservoir, where it pushes against a silicon diaphragm coated with metal. As the diaphragm balloons outward from the pressure of the gas, it comes close to an electronic device called a capacitor, which stores an electric charge. The closer it comes to the capacitor, the more it affects the capacitance in the device. The changing capacitance is related to a difference in pressure, and a mathematical model is then used to precisely measure how much gas is flowing through the sensor based on the changing pressure.

Because of the channel's diameter, which is 128 microns, barely wider than a human hair, it is extremely sensitive to small gas flows, Wereley said.

Gas-flow sensors that operate on the scale of micrometers and nanometers could have applications in environmental protection, particularly to measure the leakage of hydrocarbon fumes from fuel tanks in new cars on the manufacturing line. Federal environmental guidelines specify how much leakage is allowable.

Automakers currently test empty fuel tanks by pressurizing them with a gas, such as helium, and then measuring whether the pressure drops, indicating leakage. The test is limited because, while it can determine whether a tank is leaking, it cannot reveal how severe the leak is. Using a sensor capable of measuring gas flow on small scales would make it possible to yield more accurate data.

An accurate test also could be applied to the pharmaceutical industry, which preserves drugs in packages filled with a gas free of the molds and impurities of ambient air. Pharmaceuticals are shipped and stored in the packaging, and the industry tests packages for leakage, but gas-flow sensors could be used to test them more accurately.

The Purdue researchers worked with industry to develop the sensors, which currently are too costly to be manufactured profitably. The research is associated with the Microfluidics Laboratory at the Birck Nanotechnology Center in Purdue's Discovery Park.

The research, which has concluded, was funded by the Indiana 21st Century Research and Technology Fund and Advanced Test Concepts Inc. in Indianapolis.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Steven Wereley, (765) 494-5624, wereley@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>