Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomachine of the future captures great scientist's bold vision

05.02.2007
An idea conceived by one of the world's greatest scientists nearly 150 years ago has finally been realised with a tiny machine that could eventually lead to lasers moving objects remotely.

James Clerk Maxwell, who is ranked along Isaac Newton and Albert Einstein for his contributions to science, imagined an atom-sized device -- known as Maxwell's Demon -- that could trap molecules as they move in a specific direction.

Now scientists at the University of Edinburgh, inspired by Maxwell's thought experiment in 1867, have been able to create such a "nanomachine" for the first time with their own "demon" inside it to ensnare the molecules as they move.

The work, published in the 1 February issue of the journal Nature, could ultimately lead to scientists harnessing the energy of the molecules to displace solid objects from a distance.

Professor David Leigh, of the University of Edinburgh's School of Chemistry, said: "Our machine has a device -- or ‘demon' if you like -- inside it that traps molecule-sized particles as they move in a certain direction. Maxwell reasoned that if such a system could ever be made it would need energy to work. Without energy, it might appear that the perpetual motion of the molecules could power other devices in the same way as a windmill, but Maxwell reasoned that this would go against the second law of thermodynamics.

"As he predicted, the machine does need energy and in our experiment it is powered by light. While light has previously been used to energise tiny particles directly, this is the first time that a system has been devised to trap molecules as they move in a certain direction under their natural motion. Once the molecules are trapped they cannot escape."

Applications of the nanotechnology machine could include trapping molecules to generate a force in front of a solid object using a laser pen. By shining the pen in the direction you want the object to move, the force of the molecules could be harnessed to push the object along.

The invention of the nanotechnology machine builds on previous work at the university in which scientists were able to move a droplet of liquid up a slope using molecular force.

"Last year was the 175th anniversary of James Clerk Maxwell's birth in Edinburgh, so it is fitting that advances in science mean that we can finally create a machine like the hypothetical one he pondered over so long ago," said Prof Leigh.

"Maxwell was instrumental to our understanding of light, heat, and the behaviour of atoms and molecules. Without the foundations that he laid down a century-and-a-half ago, the science that we are doing today would not have been possible."

Tara Womersley | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>