Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomachine of the future captures great scientist's bold vision

05.02.2007
An idea conceived by one of the world's greatest scientists nearly 150 years ago has finally been realised with a tiny machine that could eventually lead to lasers moving objects remotely.

James Clerk Maxwell, who is ranked along Isaac Newton and Albert Einstein for his contributions to science, imagined an atom-sized device -- known as Maxwell's Demon -- that could trap molecules as they move in a specific direction.

Now scientists at the University of Edinburgh, inspired by Maxwell's thought experiment in 1867, have been able to create such a "nanomachine" for the first time with their own "demon" inside it to ensnare the molecules as they move.

The work, published in the 1 February issue of the journal Nature, could ultimately lead to scientists harnessing the energy of the molecules to displace solid objects from a distance.

Professor David Leigh, of the University of Edinburgh's School of Chemistry, said: "Our machine has a device -- or ‘demon' if you like -- inside it that traps molecule-sized particles as they move in a certain direction. Maxwell reasoned that if such a system could ever be made it would need energy to work. Without energy, it might appear that the perpetual motion of the molecules could power other devices in the same way as a windmill, but Maxwell reasoned that this would go against the second law of thermodynamics.

"As he predicted, the machine does need energy and in our experiment it is powered by light. While light has previously been used to energise tiny particles directly, this is the first time that a system has been devised to trap molecules as they move in a certain direction under their natural motion. Once the molecules are trapped they cannot escape."

Applications of the nanotechnology machine could include trapping molecules to generate a force in front of a solid object using a laser pen. By shining the pen in the direction you want the object to move, the force of the molecules could be harnessed to push the object along.

The invention of the nanotechnology machine builds on previous work at the university in which scientists were able to move a droplet of liquid up a slope using molecular force.

"Last year was the 175th anniversary of James Clerk Maxwell's birth in Edinburgh, so it is fitting that advances in science mean that we can finally create a machine like the hypothetical one he pondered over so long ago," said Prof Leigh.

"Maxwell was instrumental to our understanding of light, heat, and the behaviour of atoms and molecules. Without the foundations that he laid down a century-and-a-half ago, the science that we are doing today would not have been possible."

Tara Womersley | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>