Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Technology Benefits Medical Community

02.02.2007
Hopkins Team Field Tests Monitor to Characterize Raynaud’s Disease

A small group of APL researchers, in collaboration with physicians from the Johns Hopkins Scleroderma Center in Baltimore, developed and recently completed initial trials for a miniature device to help physicians characterize Raynaud’s disease and measure treatment effectiveness.

“The Ambulatory Raynaud’s Monitor is a tiny, Band-Aid-like device that enables physicians to objectively characterize a patient’s condition, determine its severity and measure symptoms in real time,” says Dr. Frederick Wigley, director of the Hopkins Scleroderma Center and one of the country’s leading scleroderma experts, who asked the Johns Hopkins University Applied Physics Laboratory (APL), in Laurel, Md., to develop the device after reading about APL’s work developing miniature devices for spacecraft. “Until now, Raynaud’s research has been crippled without such a device.”

The small, low-cost monitor wraps around a patient’s finger and is secured with a bandage or medical tape. It contains two sensors that alternately record skin and ambient temperatures – indicators of surface blood flow – every 36 seconds. Interactive controls permit a patient to record the date and time of a suspected Raynaud’s attack. A week’s data is held by the monitor’s electronics and is retained even if the device’s power is unexpectedly interrupted.

Physicians can easily download data into a computer or PDA (personal digital assistant). Software developed by APL enables physicians to quickly and easily display and plot data, which could be done during a patient’s appointment to provide real-time feedback. The monitoring system’s batteries store enough energy to operate for several months, and devices can be cleaned and reinitialized for use with multiple patients.

Triggered by cold temperatures or stress, Raynaud’s is characterized by numbness and coldness in the fingers, toes, ears and/or nose when blood vessels in those areas constrict during attacks. Insufficient blood flow near the skin’s surface also causes patients to experience skin color changes and varying levels of discomfort. Limited blood flow to the extremities can potentially lead to permanent loss of function. Raynaud’s can occur on its own, or be secondary to another condition, such as auto-immune disorders like scleroderma or lupus.

Field Trials

The device recently underwent initial testing on patients with Raynaud’s being treated at the Johns Hopkins Medical Institutions. Patients wore a monitor for one week in their homes, pressing an “event button” on the device to indicate when a Raynaud’s event was occurring. The data – processed by APL engineers and evaluated by JHMI physicians – indicates Raynaud’s events can be successfully identified. Patients said the devices are comfortable and easy to use. “The data from this preliminary study suggests that the monitor can help scientists and physicians learn more about Raynaud’s phenomenon and help investigators evaluate the effectiveness of drugs being developed to treat this disease,” says APL’s Binh Le, one of the inventors of the device.

Based on initial data, APL researchers have enhanced the monitor’s design and are gearing up for the next round of trials at JHMI later this winter.

Other Applications

In addition to monitoring Raynaud’s patients, this platform technology could be used for an array of other medical or monitoring applications. The monitor could be modified to measure skin temperature of patients at risk for developing cardiovascular disease by tracking endothelial function (how small blood vessels regulate local blood flow to the tissues). Measuring skin temperature in various real-life situations may provide a noninvasive method to determine vascular responses in health and in various disease states.

With appropriate modifications, this monitoring system could also be used to track other physiological parameters, such as pulse rate and blood pressure, and transmit the information to remote call centers. Athletes, for example, could wear it to help measure their physiological performance throughout exercise routines.

Kristi Marren | EurekAlert!
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>