Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Technology Benefits Medical Community

02.02.2007
Hopkins Team Field Tests Monitor to Characterize Raynaud’s Disease

A small group of APL researchers, in collaboration with physicians from the Johns Hopkins Scleroderma Center in Baltimore, developed and recently completed initial trials for a miniature device to help physicians characterize Raynaud’s disease and measure treatment effectiveness.

“The Ambulatory Raynaud’s Monitor is a tiny, Band-Aid-like device that enables physicians to objectively characterize a patient’s condition, determine its severity and measure symptoms in real time,” says Dr. Frederick Wigley, director of the Hopkins Scleroderma Center and one of the country’s leading scleroderma experts, who asked the Johns Hopkins University Applied Physics Laboratory (APL), in Laurel, Md., to develop the device after reading about APL’s work developing miniature devices for spacecraft. “Until now, Raynaud’s research has been crippled without such a device.”

The small, low-cost monitor wraps around a patient’s finger and is secured with a bandage or medical tape. It contains two sensors that alternately record skin and ambient temperatures – indicators of surface blood flow – every 36 seconds. Interactive controls permit a patient to record the date and time of a suspected Raynaud’s attack. A week’s data is held by the monitor’s electronics and is retained even if the device’s power is unexpectedly interrupted.

Physicians can easily download data into a computer or PDA (personal digital assistant). Software developed by APL enables physicians to quickly and easily display and plot data, which could be done during a patient’s appointment to provide real-time feedback. The monitoring system’s batteries store enough energy to operate for several months, and devices can be cleaned and reinitialized for use with multiple patients.

Triggered by cold temperatures or stress, Raynaud’s is characterized by numbness and coldness in the fingers, toes, ears and/or nose when blood vessels in those areas constrict during attacks. Insufficient blood flow near the skin’s surface also causes patients to experience skin color changes and varying levels of discomfort. Limited blood flow to the extremities can potentially lead to permanent loss of function. Raynaud’s can occur on its own, or be secondary to another condition, such as auto-immune disorders like scleroderma or lupus.

Field Trials

The device recently underwent initial testing on patients with Raynaud’s being treated at the Johns Hopkins Medical Institutions. Patients wore a monitor for one week in their homes, pressing an “event button” on the device to indicate when a Raynaud’s event was occurring. The data – processed by APL engineers and evaluated by JHMI physicians – indicates Raynaud’s events can be successfully identified. Patients said the devices are comfortable and easy to use. “The data from this preliminary study suggests that the monitor can help scientists and physicians learn more about Raynaud’s phenomenon and help investigators evaluate the effectiveness of drugs being developed to treat this disease,” says APL’s Binh Le, one of the inventors of the device.

Based on initial data, APL researchers have enhanced the monitor’s design and are gearing up for the next round of trials at JHMI later this winter.

Other Applications

In addition to monitoring Raynaud’s patients, this platform technology could be used for an array of other medical or monitoring applications. The monitor could be modified to measure skin temperature of patients at risk for developing cardiovascular disease by tracking endothelial function (how small blood vessels regulate local blood flow to the tissues). Measuring skin temperature in various real-life situations may provide a noninvasive method to determine vascular responses in health and in various disease states.

With appropriate modifications, this monitoring system could also be used to track other physiological parameters, such as pulse rate and blood pressure, and transmit the information to remote call centers. Athletes, for example, could wear it to help measure their physiological performance throughout exercise routines.

Kristi Marren | EurekAlert!
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>