Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Technology Benefits Medical Community

02.02.2007
Hopkins Team Field Tests Monitor to Characterize Raynaud’s Disease

A small group of APL researchers, in collaboration with physicians from the Johns Hopkins Scleroderma Center in Baltimore, developed and recently completed initial trials for a miniature device to help physicians characterize Raynaud’s disease and measure treatment effectiveness.

“The Ambulatory Raynaud’s Monitor is a tiny, Band-Aid-like device that enables physicians to objectively characterize a patient’s condition, determine its severity and measure symptoms in real time,” says Dr. Frederick Wigley, director of the Hopkins Scleroderma Center and one of the country’s leading scleroderma experts, who asked the Johns Hopkins University Applied Physics Laboratory (APL), in Laurel, Md., to develop the device after reading about APL’s work developing miniature devices for spacecraft. “Until now, Raynaud’s research has been crippled without such a device.”

The small, low-cost monitor wraps around a patient’s finger and is secured with a bandage or medical tape. It contains two sensors that alternately record skin and ambient temperatures – indicators of surface blood flow – every 36 seconds. Interactive controls permit a patient to record the date and time of a suspected Raynaud’s attack. A week’s data is held by the monitor’s electronics and is retained even if the device’s power is unexpectedly interrupted.

Physicians can easily download data into a computer or PDA (personal digital assistant). Software developed by APL enables physicians to quickly and easily display and plot data, which could be done during a patient’s appointment to provide real-time feedback. The monitoring system’s batteries store enough energy to operate for several months, and devices can be cleaned and reinitialized for use with multiple patients.

Triggered by cold temperatures or stress, Raynaud’s is characterized by numbness and coldness in the fingers, toes, ears and/or nose when blood vessels in those areas constrict during attacks. Insufficient blood flow near the skin’s surface also causes patients to experience skin color changes and varying levels of discomfort. Limited blood flow to the extremities can potentially lead to permanent loss of function. Raynaud’s can occur on its own, or be secondary to another condition, such as auto-immune disorders like scleroderma or lupus.

Field Trials

The device recently underwent initial testing on patients with Raynaud’s being treated at the Johns Hopkins Medical Institutions. Patients wore a monitor for one week in their homes, pressing an “event button” on the device to indicate when a Raynaud’s event was occurring. The data – processed by APL engineers and evaluated by JHMI physicians – indicates Raynaud’s events can be successfully identified. Patients said the devices are comfortable and easy to use. “The data from this preliminary study suggests that the monitor can help scientists and physicians learn more about Raynaud’s phenomenon and help investigators evaluate the effectiveness of drugs being developed to treat this disease,” says APL’s Binh Le, one of the inventors of the device.

Based on initial data, APL researchers have enhanced the monitor’s design and are gearing up for the next round of trials at JHMI later this winter.

Other Applications

In addition to monitoring Raynaud’s patients, this platform technology could be used for an array of other medical or monitoring applications. The monitor could be modified to measure skin temperature of patients at risk for developing cardiovascular disease by tracking endothelial function (how small blood vessels regulate local blood flow to the tissues). Measuring skin temperature in various real-life situations may provide a noninvasive method to determine vascular responses in health and in various disease states.

With appropriate modifications, this monitoring system could also be used to track other physiological parameters, such as pulse rate and blood pressure, and transmit the information to remote call centers. Athletes, for example, could wear it to help measure their physiological performance throughout exercise routines.

Kristi Marren | EurekAlert!
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>