Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists detect first afterglow of short gamma-ray bursts

19.02.2002


In the powerful, fast-fading realm of gamma-ray bursts, scientists say they have detected for the first time a lingering afterglow of the shortest types of bursts, which themselves disappear within a second.



This afterglow, radiating in X rays, may provide crucial insight into what triggers the mysterious bursts, the most energetic explosions in the Universe, second only to the big bang in total power. Previously, scientists had only detected the afterglow of longer bursts, which can last from a few seconds to about a minute and which seem to be of different origin than short bursts.

Davide Lazzati and Enrico Ramirez-Ruiz of the Institute of Astronomy at the University of Cambridge, along with Gabriele Ghisellini of the Osservatorio Astronomico di Brera in Merate, Italy, published these results in a recent issue of Astronomy & Astrophysics.


"The discovery of afterglows for long bursts in 1997 was a breakthrough, allowing us to determine that these explosions originate at cosmological distances, billions of light years away," said Lazzati. "Short bursts, which sometimes last for only a few milliseconds, are naturally harder to catch. With the discovery that they too have an afterglow, we may now finally have at least a small handle to study them."

Many scientists believe that longer bursts are from the collapse of massive stars. This is the so-called collapsar model, which may entail the collapse of a theorized hyperstar, more massive than the stars that explode as supernovae. Shorter bursts, under two seconds long, may originate from the collision of two neutron stars or black holes. As exotic as they may sound, gamma-ray bursts are remarkably common, detected nearly daily by earth-orbiting satellites.

Precious little is known about short bursts. Because they fade so quickly, orbiting burst detectors have been unable to accurately determine the location of the short bursts. Thus scientists cannot study the "crime scene" to search for clues of the explosion, as they can with longer bursts. Also, short bursts might not produce bright afterglows, further complicating their study.

The afterglow of any gamma-ray burst is caused by an event different from the original explosion, likely by blast waves from the burst ramming material from its chaotic source into matter in the surrounding medium. The detection of afterglows in short bursts may allow scientists to study the critical early phases of this phenomenon, hidden under the brighter prompt emission of long bursts.

Lazzati and his colleagues looked for signs of an afterglow in the archived data of short bursts detected by the BATSE instrument aboard NASA`s Compton Gamma-Ray Observatory, a mission that ran from 1991 to 1999. Although a given burst may only last a few seconds, each burst usually triggers the BATSE detectors to collect any gamma rays or higher-energy X rays (also called hard X rays or soft gamma rays) that come their way for the next 200-plus seconds.

The team studied several hundred short bursts lasting less than one second and having a high "signal-to-noise ratio," meaning that an afterglow would be less likely to be masked, or missed, by background radiation, or noise. The detection was performed on the sum of the best 76 light curves, since the afterglow of a single event is too faint to be detected against the background radiation.

"Characteristics in the light suggest that this peak in emission is produced by the deceleration of a relativistic blast wave, as predicted by the afterglow model and observed for the class of long-duration bursts," said Ramirez-Ruiz.

The similarity of afterglows does not rule out that short and long bursts are different, Ramirez-Ruiz said. Further analysis and observations, along with theoretical modeling, will be needed to determine the physics of the sources and their distance (perhaps within our Galaxy or from the distant, early Universe). While both types of bursts appear to emanate from their source as beamed jets, as opposed to an expanding fireball, the data indicate that short bursts may have an opening jet angle 3-10 times larger than the long bursts. Thus, they may have a similar overall energy, only spread out over a wider distance.

The afterglow phenomenon was first detected by the Italian-led Beppo-SAX X-ray satellite, nearly five years ago. The Swift satellite -- a NASA-led international mission on schedule for a 2003 launch -- will be "swift" enough to detect and localize short gamma-ray bursts and notify other satellites and telescopes within seconds. Swift`s X-ray and ultraviolet telescopes will also be able to study the afterglow phenomenon in depth.

Dr Davide Lazzate | alphagalileo
Further information:
http://www.ast.cam.ac.uk/~lazzati/short/short.html

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>