Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists detect first afterglow of short gamma-ray bursts

19.02.2002


In the powerful, fast-fading realm of gamma-ray bursts, scientists say they have detected for the first time a lingering afterglow of the shortest types of bursts, which themselves disappear within a second.



This afterglow, radiating in X rays, may provide crucial insight into what triggers the mysterious bursts, the most energetic explosions in the Universe, second only to the big bang in total power. Previously, scientists had only detected the afterglow of longer bursts, which can last from a few seconds to about a minute and which seem to be of different origin than short bursts.

Davide Lazzati and Enrico Ramirez-Ruiz of the Institute of Astronomy at the University of Cambridge, along with Gabriele Ghisellini of the Osservatorio Astronomico di Brera in Merate, Italy, published these results in a recent issue of Astronomy & Astrophysics.


"The discovery of afterglows for long bursts in 1997 was a breakthrough, allowing us to determine that these explosions originate at cosmological distances, billions of light years away," said Lazzati. "Short bursts, which sometimes last for only a few milliseconds, are naturally harder to catch. With the discovery that they too have an afterglow, we may now finally have at least a small handle to study them."

Many scientists believe that longer bursts are from the collapse of massive stars. This is the so-called collapsar model, which may entail the collapse of a theorized hyperstar, more massive than the stars that explode as supernovae. Shorter bursts, under two seconds long, may originate from the collision of two neutron stars or black holes. As exotic as they may sound, gamma-ray bursts are remarkably common, detected nearly daily by earth-orbiting satellites.

Precious little is known about short bursts. Because they fade so quickly, orbiting burst detectors have been unable to accurately determine the location of the short bursts. Thus scientists cannot study the "crime scene" to search for clues of the explosion, as they can with longer bursts. Also, short bursts might not produce bright afterglows, further complicating their study.

The afterglow of any gamma-ray burst is caused by an event different from the original explosion, likely by blast waves from the burst ramming material from its chaotic source into matter in the surrounding medium. The detection of afterglows in short bursts may allow scientists to study the critical early phases of this phenomenon, hidden under the brighter prompt emission of long bursts.

Lazzati and his colleagues looked for signs of an afterglow in the archived data of short bursts detected by the BATSE instrument aboard NASA`s Compton Gamma-Ray Observatory, a mission that ran from 1991 to 1999. Although a given burst may only last a few seconds, each burst usually triggers the BATSE detectors to collect any gamma rays or higher-energy X rays (also called hard X rays or soft gamma rays) that come their way for the next 200-plus seconds.

The team studied several hundred short bursts lasting less than one second and having a high "signal-to-noise ratio," meaning that an afterglow would be less likely to be masked, or missed, by background radiation, or noise. The detection was performed on the sum of the best 76 light curves, since the afterglow of a single event is too faint to be detected against the background radiation.

"Characteristics in the light suggest that this peak in emission is produced by the deceleration of a relativistic blast wave, as predicted by the afterglow model and observed for the class of long-duration bursts," said Ramirez-Ruiz.

The similarity of afterglows does not rule out that short and long bursts are different, Ramirez-Ruiz said. Further analysis and observations, along with theoretical modeling, will be needed to determine the physics of the sources and their distance (perhaps within our Galaxy or from the distant, early Universe). While both types of bursts appear to emanate from their source as beamed jets, as opposed to an expanding fireball, the data indicate that short bursts may have an opening jet angle 3-10 times larger than the long bursts. Thus, they may have a similar overall energy, only spread out over a wider distance.

The afterglow phenomenon was first detected by the Italian-led Beppo-SAX X-ray satellite, nearly five years ago. The Swift satellite -- a NASA-led international mission on schedule for a 2003 launch -- will be "swift" enough to detect and localize short gamma-ray bursts and notify other satellites and telescopes within seconds. Swift`s X-ray and ultraviolet telescopes will also be able to study the afterglow phenomenon in depth.

Dr Davide Lazzate | alphagalileo
Further information:
http://www.ast.cam.ac.uk/~lazzati/short/short.html

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>