Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising transition observed when flowing grains become too jam packed to move

31.01.2007
Using color-shifting cylinders as substitutes for sand grains or coal lumps, a Duke University-led team of physicists has pinpointed a critical density level where granular materials suddenly cease flowing like a liquid and instead congeal into a state of rigidity.

That magic moment -- described as a "jamming transition" -- is announced by a kind of phase change analogous to the freezing of water, the scientists showed in experiments.

"The transition does not occur at the point that the particles are as dense as they can possibly be," said Robert Behringer, the Duke physics professor who led the research team. "Actually, they are just beginning to get densely packed. So you don't need that much compaction to make them like solids. You just need this sort of magical amount.

"That's really very peculiar," he said. "Experience wouldn't suggest that there would be this magic point where there would suddenly be this leap."

The findings could help engineers resolve when grainlike coal pieces will clump together and when they will flow like a liquid. "If you open the door to a coal hopper, you don't want the coal to be like a solid," Behringer said. "You want it to flow."

The report was posted online on Monday, Jan. 29, in the journal Physical Review Letters.

The research was funded by the National Science Foundation; the U.S.-Israel Binational Science Foundation; and Deutsche Forschungsgemeinschaft, the German equivalent of the NSF.

Behringer has spent years overseeing experimental studies of granular materials, a group that includes sand, coal, cereal, sugar, pills, powders, gravel and ice cubes.

Such materials exhibit uncanny group behavior in which they sometimes flow but other times clump rigidly in a mass, he said. This behavior is unpredictable, with examples occurring in such diverse events as coal jams and avalanches.

A previous Behringer-led experiment demonstrated that small plastic beads exhibiting grainlike behavior can be made to "freeze" into crystallike solids or "melt" into loose and fluidlike irregularity, depending on how they are stirred or shaken.

In the new study, the researchers provided an unprecedented analysis detailing what happens as free-flowing grains begin to get jammed by each other.

The experiment relied on plastic cylinders as grain substitutes. The cylinders changed color where squeezed, giving researchers a glimpse of jagged "force chains" that transmit the group effects of grain-on-grain influences within a closed system.

The researchers compressed the cylinders within an adjustable frame and analyzed what happened using special computational mathematics developed by Trushant Majmudar, the first author of the journal report, who is a former Duke graduate student and now a postdoctoral researcher at the Massachusetts Institute of Technology.

"When a container is really large, there's lots of space between the particles so they don't touch very much and the system acts like a fluid," Behringer said. "But as you shrink the container, the number of contacts grows. And the prediction was that when there are enough contacts per particle, the system will make this transition from fluid to solid."

Confirming the almost-decade-old predictions of theoreticians from the University of Pennsylvania and the University of Chicago as well as Princeton, Yale and Brandeis universities, the Duke team documented that at a critical confluence, pressure and particle-density readings suddenly increase and then diverge -- a change mathematically known as a "power law."

Such power laws are also expressed in phase transitions, such as the point at which water and steam become indistinguishable, Behringer said.

Comparative digital images of the system in "almost jammed" versus "highly jammed" states graphically documented the difference, with a network of glowing force chains clearly visible in the highly jammed image, he said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>