Liquid crystals stabilised

Liquid crystals are materials that combine the properties of a liquid with those of crystalline solids. They show a middle phase, known as mesophase or liquid crystalline phase, in which the material has unique characteristics that can be used in liquid crystal display (LCD) screens and solar cells.

One use of columnar discotic liquid crystals is charge transport in photovoltaic solar cells, where a high degree of order within the mesophase is required.

Ioan Paraschiv investigated whether it is possible to stabilise columnar discotic liquid crystals using hydrogen bonds. For this, he prepared columnar discotic liquid crystals based on triphenylene core. He stabilised the ordering in the mesophase by realising a synergy between various bonding interactions.

The mesophases of the newly-formed columnar discotic liquid crystals were found to be highly stable. Moreover, the material was still easy to process, due to its high solubility in organic solvents. This combination of stability and ease of processing is particularly important for the use of these materials in different applications.

Ioan Paraschiv's research was funded by NWO.

Media Contact

Ioan Paraschiv alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors