Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dig deeper to find Martian life

30.01.2007
Probes designed to find life on Mars do not drill deep enough to find the living cells that scientists believe may exist well below the surface of Mars, according to research led by UCL (University College London).

Although current drills may find essential tell-tale signs that life once existed on Mars, cellular life could not survive the radiation levels for long enough any closer to the surface of Mars than a few metres deep – beyond the reach of even state-of-the-art drills.

The study, published in the journal ‘Geophysical Research Letters’ (GRL), maps out the cosmic radiation levels at various depths, taking into account different surface conditions on Mars, and shows that the best place to look for living cells is within the ice at Elysium, the location of the newly discovered frozen sea on Mars.

The lead author, Lewis Dartnell, UCL Centre for Mathematics and Physics in the Life Sciences & Experimental Biology (CoMPLEX), said: “Finding hints that life once existed – proteins, DNA fragments or fossils – would be a major discovery in itself, but the Holy Grail for astrobiologists is finding a living cell that we can warm up, feed nutrients and reawaken for studying.

“It just isn’t plausible that dormant life is still surviving in the near-subsurface of Mars – within the first couple of metres below the surface – in the face of the ionizing radiation field. Finding life on Mars depends on liquid water surfacing on Mars, but the last time liquid water was widespread on Mars was billions of years ago. Even the hardiest cells we know of could not possibly survive the cosmic radiation levels near the surface of Mars for that long.”

Survival times near the surface reach only a few million years. This means that the chance of finding life with the current probes is slim. Scientists will need to dig deeper and target very specific, hard-to-reach areas such as recent craters or areas where water has recently surfaced.

Dr Andrew Coates, UCL Department of Space & Climate Physics, said: “This study is trying to understand the radiation environment on Mars and its effect on past and present life. This is the first study to take a thorough look at how radiation behaves in the atmosphere and below the surface and it’s very relevant to planned missions. The best chance we have of finding life is looking in either the sea at Elysium or fresh craters.”

The team found that the best places to look for living cells on Mars would be within the ice at Elysium because the frozen sea is relatively recent – it is believed to have surfaced in the last five million years – and so has been exposed to radiation for a relatively short amount of time. H2O provides an ideal shield of hydrogen to protect life on Mars from destructive cosmic radiation particles. Ice also holds an advantage because it is far easier to drill through than rock. Even here, surviving cells would be out of the reach of current drills. Other ideal sites include recent craters, because the surface has been exposed to less radiation, and the gullies recently discovered in the sides of craters, as they are thought to have flowed with water in the last five years.

The team developed a radiation dose model to study the radiation environment for possible life on Mars. Unlike Earth, Mars is not protected by a global magnetic field or thick atmosphere and for billions of years it has been laid bare to radiation from space. The team quantified how solar and galactic radiation is modified as it goes through the thin Martian atmosphere to the surface and underground.

Three different surface scenarios were tested; dry regolith, water ice, and regolith with layered permafrost. The particle energies and radiation doses were measured on the surface of Mars and at regular depths underground, allowing the calculation of cell survival times.

The team took the known radiation resistance of terrestrial cells combined with the annual radiation doses on Mars to calculate the survival time of dormant populations of the cells. Some strains are radiation-resistant and are able to survive the effects because, when active, they successfully repair the DNA breaks caused by ionising radiation. However, when cells are dormant, such as when frozen as in the subsurface of Mars, they are preserved but unable to repair the damage, which accumulates to the point where the cell becomes permanently inactivated.

Mr Dartnell said: “With this model of the subsurface radiation environment on Mars and its effects on the survival of dormant cells we have been able to accurately determine the drilling depth required for any hope of recovering living cells. We have found that this suspected frozen sea in Elysium represents one of the most exciting targets for landing a probe, as the long-term survival of cells here is better than underground in icy rock. This could be crucial for the scientists and engineers planning future Mars missions to find life.”

Alex Brew | alfa
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>