Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lamp plus laser – a good pairing

30.01.2007
Specialists from NPO Lavochkin, together with colleagues from the All-Russia Research Institute of Experimental Physics in Sarov and with the support of Professor Antonio Lapucci from the Institute of Applied Optics in Florence, Italy and Director of the Welding Institute in Aachen (Germany) Professor Ulrich Delthey, are developing a completely new light-laser welding system with the use of powerful polychromatic energy sources. This makes it possible to avoid the shortcomings of laser welding that were previously thought to be unavoidable. Financial support for the project comes from the International Science and Technology Centre.

The complex, the first experimental version of which has already been constructed and is being tested by scientists from this world-famous space science and technology centre, involves two energy sources, a Nd-YAG-laser (a neodymium-yttrium aluminium garnet laser), which is what performs the spot weld itself, and a special light module, a powerful source of light, the spectrum of which can be altered. And, of course, there is the requisite equipment and the corresponding software, which enables automatic welding over a pre-set program.

The crux of the method indeed lies in the use of this second, light source of radiation. Its power and spectral attributes are such that it can quickly and effectively heat a weld area and its surrounding space to a temperature, if required, to over 1000 degrees. In its turn, this is a guarantee that defects that form under the welding of cold (that is specially non-heated) parts are significantly fewer, while the need for annealing ready products is eradicated altogether.

Indeed, welders have long since known that the quality of a weld-join is essentially better if the parts to be welded are well heated. Cases have even been known when large metal parts are welded even before they have cooled after smelting. But how can you heat parts sufficiently quickly and effectively if one of them is made, for example, from invar (an iron-nickel alloy), which hardly alters its dimensions when heated, and the other is made from glass? How can they be heated to high temperatures without damaging them?

To resolve this problem, Doctor of Technical Sciences Valentin Sysoev and his colleagues proposed the use of a powerful lamp where, shining the beam of this lamp on the surface to be welded, can heat the item to the required temperature. In principle, such sources of energy could be the only ones to use for welding, only the excessively large diameter of the light beam (up to 2-3mm) and certain other features mean that they cannot be used for spot welding. However, the scientists believe that using them not for welding but for heating a surface, inside which a narrow laser beam will perform the spot weld, is not only possible, but also very necessary. The fall in temperature between the point of the weld and around it will be much smoother, and this is what defines the exceptionally high quality of the weld.

If we take account of the fact that a combined approach of this kind can use weaker lasers, than those that are traditionally applied, it will transpire that this new method is not only more effective, but is also more economical as the price of lasers is proportionate to their power. So it can be hoped that in the very near future the process of laser welding of car chassis and other items of importance to us all will be better and cheaper. The guarantee for this is the very highest level of professionalism of the team of scientists on this project and the financial support provided to the scientists by the ISTC.

Andrew Vakhliaev | alfa
Further information:
http://www.istc.ru
http://tech-db.istc.ru/ISTC/sc.nsf/events/lamp-plus-laser

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>