Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploiting space with low cost satellites

29.01.2007
At a time when European science budgets are increasingly under pressure UK academia and industry representatives met in London (24th January 2007) to look at opportunities for exploiting space using low cost satellites.

UK industry and academia has developed a unique partnership in designing and building compact and extremely cost effective satellites packed with innovative technology including miniaturised instrumentation, robotics, software and autonomous systems. Such small spacecraft can make a real contribution to scientific research, environmental monitoring, navigation and communications, alongside more traditional larger missions.”

Through the European Space Agency’s (ESA) Cosmic Vision programme, which looks at an exploration programme for the time period of 2015-2025, there will inevitably be great opportunities for UK industry and academia to provide lead roles in medium and large missions. Ahead of this it is anticipated that there will be several precursor technology demonstrator missions within ESA’s Aurora programme which will need lower cost technologies developed over a shorter timescale, and this is where the UK could exploit its expertise in small satellites.

Professor Keith Mason, Chief Executive of the Particle Physics and Astronomy Research Council (PPARC) said, “Whilst it is recognised that some space missions can only be achieved using larger platforms frontier science can be obtained by smaller, more defined satellites. Bigger doesn’t necessarily mean better.”

He adds, “The miniaturised instrumentation produced for missions such as Rosetta and in development for ExoMars alongside the recent feasibility study for two lunar missions demonstrate the knowledge and expertise we have here in the UK. There is huge potential for industry and academia to work closer together to take this forward for future missions opportunities.”

The advantages of producing small satellites are multiple. Not only can they be produced over a shorter time scale but they cost significantly less – allowing more regular opportunities for the launch of missions. It can also be argued that small satellites allow for more optimised missions by carrying a single primary instrument. This means that there are no compromise issues which often occur on larger missions carrying a diverse payload.

A further factor, particularly with regard to earth observation programmes, is that there is a great need for continuity of data. The technology exists to obtain data but when a large mission comes to an end inevitably there will be gaps in the data sets – which could be critical when looking at earth monitoring studies. This particular need could be addressed through greater use of numerous small satellites.

Nathan Hill, from PPARC’s KITE Club Innovation Advisory Service and coordinator of the UK ESA Knowledge Transfer Programme said, “Through the production of small satellites there will no doubt be increased knowledge transfer benefits from the technology which will impact on society. As well as looking for ‘spin outs’ from science we are also encouraging ‘spin in’ whereby industry bring some of their novel technology into the playing field. Technologies are developed further for use in space, value added, and then the resulting technology is spun out again for a different application.”

One example illustrating how technologies from other industries can have influence on space technologies comes from the oil and gas sector. Instrumentation developed for shallow and remote drilling in oil fields on Earth have many of the same requirements as drilling and penetration instruments on the Moon – in terms of robustness and autonomy. By working together both sectors can benefit from advances in the technologies used.

The workshop brought together representatives of the space industry, instrumentation, aerospace and defence suppliers with technologies to offer in low cost space satellites and miniaturised instrumentation plus the space science, earth observation, space exploration and fundamental physics academic communities – with interests in space based experimental platforms.

The Science on Low Cost Space Missions workshop was the first in a series of PPARC KITE Club events supported by the new ESA Knowledge Transfer Programme led by PPARC on behalf of the BNSC partners.

Jill Little | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>