Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lutetia asteroid in Rosetta’s spotlight

29.01.2007
Earlier this month ESA's Rosetta had a first look at asteroid 21-Lutetia, one of the targets of its long mission. The onboard camera OSIRIS imaged the asteroid passing through its field of view during the spacecraft's gradual approach to Mars. The planet will be reached on 25 February 2007 for the mission's next gravity assist.

During its long trek to final destination (comet 67P Churyumov-Gerasimenko), Rosetta is planned to study two asteroids – 2867-Steins and 21-Lutetia, both lying in the asteroid belt between the orbits of Mars and Jupiter. Asteroids, as well as comets, carry important information about the origin of the Solar System – a better understanding of which is one of the primary goals of Rosetta.

The two asteroids will be visited at close range in September 2008 and July 2010, respectively, but the Rosetta scientists have already taken the opportunity to collect preliminary data about them. This opportunity will help scientists to better prepare for the broader observation campaigns of the two asteroids to come at later stage.

Steins was imaged by Rosetta on March 11, while Lutetia was first imaged by Rosetta during a 36-hour observation campaign on 2 and 3 January 2007, when the spacecraft was flying at about 245 million kilometres from the asteroid. OSIRIS, the Optical, Spectroscopic, and Infrared Remote Imaging System mounted onboard the Rosetta orbiter, was switched on for this remote sensing observation.

Lutetia can be seen as the near-stationary spot visible at the centre of the animated sequence presented in this article. The scattered light spots seen in the movie are cosmic rays events, that is high-energy cosmic radiation hitting the detectors of the OSIRIS camera.

Little is known about Lutetia and Steins. Actually, very little is known about asteroids in general. Out of the many millions of asteroids that populate the Solar System, only a few have been observed so far from near-by.

According to what we know so far, Steins and Lutetia have rather different properties. Steins is relatively small, with a diameter of a few kilometres. Lutetia is a much bigger object, about 100 kilometres in diameter.

The Lutetia observation this month were aimed at pre-characterizing the rotation direction of the asteroid. This can be done by the study of the so-called 'light curve' of the asteroid – by analysing how the light emitted by the observed object changes intensity for the observer, one can deduce in what direction the object rotates. Scientists are now busy in analysing the OSIRIS data to build the light curve of Lutetia.

Having concluded the Lutetia observations, Rosetta is now getting ready for the next mission milestone: the swing-by of planet Mars. At the end of February, the gravitational energy of the Red Planet will be used by the spacecraft to get accelerated and then pushed, like a stone in a sling-shot, on a trajectory towards Earth for the following gravity assist manoeuvre in November 2007.

In the meantime Rosetta continues to provide new emotions as this incredible spacecraft, travelling through the Solar System as a cosmic 'billiard ball', collects data and images of the objects on its way.

Gerhard Schwehm | alfa
Further information:
http://www.esa.int/SPECIALS/Rosetta/SEMNRESMTWE_0.html

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>