Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electron flashes for the nanoworld – a new source of ultrashort electron pulses

Researchers at the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin, Germany, have developed a novel source of extremely short electron pulses.

The electron source is based on an ultra-sharp metallic needle illuminated with short light pulses from a laser. “With these electron pulses, it is possible to directly observe fast processes in the nanoworld”, Claus Ropers explains, who performed the work in collaboration with Daniel Solli, Claus-Peter Schulz, Christoph Lienau and Thomas Elsaesser. The researchers report their findings in the present issue of Physical Review Letters (Volume 98, 043907 (2007)).

Nanostructures play a key role in physics, chemistry and materials sciences, and they are at the foundation of modern microelectronics and communication technology. These structures with dimensions of few nanometers – 1 nanometer (nm) is a billionth of a meter – exhibit physical and chemical properties which can be tailored in a wide range.

In order to determine the dimensions and other structural characteristics of nanostructures, researchers often employ powerful electron microscopes. Such instruments only deliver static images of the time averaged state of the sample investigated. The function of nanosystems is, however, often closely related to dynamical processes occuring on time scales of less than one picosecond (1 ps, one millionth of a millionth of a second). Therefore, intense research efforts worldwide are devoted to develop methods capable of imaging such processes, for example as a series of snapshots. Besides ultrashort pulses of light, x-ray and electron pulses are particularly suited for this purpose, as they can provide direct information on rapid structural changes.

The team at the MBI has now demonstrated a new technique to generate ultrashort and localized electron pulses. A metallic needle of only 40 nm diameter is illuminated with laser light pulses of only 0.007 ps duration. The intensity of the incident light is enhanced at the needle tip to an extent that it leads to strong emission of electrons. These charged particles can be used to investigate a sample close to the needle. The particluar excitation conditions result in an extremely short duration of the electron pulses of less than 0.02 ps which determines the temporal resolution of this new “electron camera”.

The potential of this “point-like” electron source for the imaging of nanostructures has been demonstrated in experiments, where the illuminated needle is raster-scanned in close proximity across a 50 nm wide nano-groove in a gold surface. Along the cross-section of the metal groove, the electron yield varies due to the varying generation conditions. This allows for a direct determination of the profile and the electromagnetic field distribution at the groove with nanometer precision. In the same way, microelectronic devices on the nano scale and their properties can be investigated.

Currently, the electron pulses are used in first time-resolved experiments on nanostructures to image ultrafast processes. Beyond the application of the source in the raster scanning scenario, the researchers suggest a broad applicability for electron diffraction experiments with highest temporal resolution on solids, surfaces or molecular systems.

The research has been financially supported by the German Research Foundation.

Josef Zens | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>