Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electron flashes for the nanoworld – a new source of ultrashort electron pulses

29.01.2007
Researchers at the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin, Germany, have developed a novel source of extremely short electron pulses.

The electron source is based on an ultra-sharp metallic needle illuminated with short light pulses from a laser. “With these electron pulses, it is possible to directly observe fast processes in the nanoworld”, Claus Ropers explains, who performed the work in collaboration with Daniel Solli, Claus-Peter Schulz, Christoph Lienau and Thomas Elsaesser. The researchers report their findings in the present issue of Physical Review Letters (Volume 98, 043907 (2007)).

Nanostructures play a key role in physics, chemistry and materials sciences, and they are at the foundation of modern microelectronics and communication technology. These structures with dimensions of few nanometers – 1 nanometer (nm) is a billionth of a meter – exhibit physical and chemical properties which can be tailored in a wide range.

In order to determine the dimensions and other structural characteristics of nanostructures, researchers often employ powerful electron microscopes. Such instruments only deliver static images of the time averaged state of the sample investigated. The function of nanosystems is, however, often closely related to dynamical processes occuring on time scales of less than one picosecond (1 ps, one millionth of a millionth of a second). Therefore, intense research efforts worldwide are devoted to develop methods capable of imaging such processes, for example as a series of snapshots. Besides ultrashort pulses of light, x-ray and electron pulses are particularly suited for this purpose, as they can provide direct information on rapid structural changes.

The team at the MBI has now demonstrated a new technique to generate ultrashort and localized electron pulses. A metallic needle of only 40 nm diameter is illuminated with laser light pulses of only 0.007 ps duration. The intensity of the incident light is enhanced at the needle tip to an extent that it leads to strong emission of electrons. These charged particles can be used to investigate a sample close to the needle. The particluar excitation conditions result in an extremely short duration of the electron pulses of less than 0.02 ps which determines the temporal resolution of this new “electron camera”.

The potential of this “point-like” electron source for the imaging of nanostructures has been demonstrated in experiments, where the illuminated needle is raster-scanned in close proximity across a 50 nm wide nano-groove in a gold surface. Along the cross-section of the metal groove, the electron yield varies due to the varying generation conditions. This allows for a direct determination of the profile and the electromagnetic field distribution at the groove with nanometer precision. In the same way, microelectronic devices on the nano scale and their properties can be investigated.

Currently, the electron pulses are used in first time-resolved experiments on nanostructures to image ultrafast processes. Beyond the application of the source in the raster scanning scenario, the researchers suggest a broad applicability for electron diffraction experiments with highest temporal resolution on solids, surfaces or molecular systems.

The research has been financially supported by the German Research Foundation.

Josef Zens | alfa
Further information:
http://www.fv-berlin.de

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>