Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of crystal phase transition may enable controlled structure transformation

29.01.2007
Finnish-Japanese joint research project yields first-rate results

A Finnish-Japanese joint research project has produced first-rate results by discovering a phase transition in the structure of crystalline materials in atomistic simulations. The research is part of the joint project "Novel approach to Fabrication of Microsystems within Joint Finnish-Japanese Collaboration" funded by the Academy of Finland.

In the research, fine, atomic-scale needles were pushed onto crystal surfaces. The sudden movement of the needle has traditionally been understood in terms of the movement of dislocations in the crystal structure. The results achieved in the project, however, suggest that it may in semiconductors be a question of a crystalline-to-crystalline phase transition. The discovery may in the future enable controlled structure transformation.

The results of the molecular dynamic simulations by Dr Dariusz Chrobak and Professor Roman Nowak from the Nordic Hysitron Laboratory of Helsinki University of Technology, together with Professor Kai Nordlund from the Helsinki University Accelerator Laboratory were published in Physical Review Letters on 26 January 2007.

The Nordic Hysitron Laboratory (NHL) international research group is part of the Department of Materials Science and Engineering at Helsinki University of Technology. The main target of NHL is mechanical characterisation of advanced materials and nanostructures using a Hysitron TriboIndenter capable of high precision probing (depth resolution 0.2 nm) of solid surfaces. The experiments are coupled with finite element and atomistic simulation of the explored nanometer-size contacts performed in cooperation with Professor Nordlund and his team from the Accelerator Laboratory at the University of Helsinki.

Niko Rinta | alfa
Further information:
http://link.aps.org/abstract/PRL/v98/e045502
http://www.aka.fi

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>