Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of crystal phase transition may enable controlled structure transformation

29.01.2007
Finnish-Japanese joint research project yields first-rate results

A Finnish-Japanese joint research project has produced first-rate results by discovering a phase transition in the structure of crystalline materials in atomistic simulations. The research is part of the joint project "Novel approach to Fabrication of Microsystems within Joint Finnish-Japanese Collaboration" funded by the Academy of Finland.

In the research, fine, atomic-scale needles were pushed onto crystal surfaces. The sudden movement of the needle has traditionally been understood in terms of the movement of dislocations in the crystal structure. The results achieved in the project, however, suggest that it may in semiconductors be a question of a crystalline-to-crystalline phase transition. The discovery may in the future enable controlled structure transformation.

The results of the molecular dynamic simulations by Dr Dariusz Chrobak and Professor Roman Nowak from the Nordic Hysitron Laboratory of Helsinki University of Technology, together with Professor Kai Nordlund from the Helsinki University Accelerator Laboratory were published in Physical Review Letters on 26 January 2007.

The Nordic Hysitron Laboratory (NHL) international research group is part of the Department of Materials Science and Engineering at Helsinki University of Technology. The main target of NHL is mechanical characterisation of advanced materials and nanostructures using a Hysitron TriboIndenter capable of high precision probing (depth resolution 0.2 nm) of solid surfaces. The experiments are coupled with finite element and atomistic simulation of the explored nanometer-size contacts performed in cooperation with Professor Nordlund and his team from the Accelerator Laboratory at the University of Helsinki.

Niko Rinta | alfa
Further information:
http://link.aps.org/abstract/PRL/v98/e045502
http://www.aka.fi

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>