Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Helps Space Telescope Camera "Squint" for a Better View of Galaxies

NASA engineers and scientists have created something that will give better information about far away galaxies. This new creation, which will be in a future space telescope, is so tiny that it's the width of a few hairs.

"Microshutters" are tiny doorways that bring stars and galaxies very far away into better focus. This new technology will go aboard the James Webb Space Telescope, to be launched into space in a decade.

The microshutters will enable scientists to block unwanted light from objects closer to the camera in space, letting the light from faraway objects shine through. To get an idea of how these tiny little "hairlike" shutters work, think about how you try to make something look clearer – you squint. By squinting, your eyelashes block out light closer to you. That's similar to how the microshutters work.

These microshutters will allow the telescope to focus on the faint light of stars and galaxies so far away, they formed early in the history of the universe. That's because light travels at 186,000 miles per second, and light is still traveling through space from the time the universe started. No other telescope has this microshutter technology.

The Webb Telescope will take over for the Hubble Space Telescope. It is planned for launch in the next decade.

New technology always gets tested and re-tested to make sure it's ready to go on a spacecraft. In December 2006, the microshutters passed important tests that showed they can handle the stresses of being launched and placed in deep space.

The microshutters were designed, built and tested at NASA's Goddard Space Flight Center in Greenbelt, Md. They will work with a camera scheduled to be onboard the telescope called the "Near Infrared Spectrograph," which will be built by the European Space Agency. The spectrograph will break up the light from the galaxies into a rainbow of different colors, allowing scientists to determine the kinds of stars and gasses that make up the galaxies and measure their distances and motions.

"To build a telescope that can peer farther than Hubble can, we needed brand new technology," said Murzy Jhabvala, chief engineer of Goddard's Instrument Technology and Systems Division. "We've worked on this design for over six years, opening and closing the tiny shutters tens of thousands of times in order to perfect the technology."

Each shutter measures 100 by 200 microns, or about the width of three to six human hairs. These tiny shutters are arranged in a waffle-like grid containing over 62,000 shutters. The telescope will contain four of these waffle-looking grids all put together. They also have to work at the incredibly cold temperature of minus 388 degrees Fahrenheit (-233 degrees Celsius).

The big benefit of the microshutters is that they will allow scientists to look at 100 things in space at the same time and see deeper into space in less time.

"The microshutters are a remarkable engineering feat that will have applications both in space and on the ground, even outside of astronomy in biotechnology, medicine and communications," said Harvey Moseley, the Microshutter Principal Investigator.

Rob Gutro | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>