Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano world off the radar for most

24.01.2007
Sunscreens contain nano particles, carbon and titania nanotubes show promise and nano structures are the rage in engineering schools. While the proliferation of nano research may signal a mini revolution, outside the realms of business and science, this insurgency may be no more than a whisper, according to an international team of researchers.

"In the last 15 years we have continuously been exposed to a variety of emerging technologies – biotechnology, information science and technology, cognitive science and now nanotechnology," says Dr. Akhlesh Lakhtakia, the Charles Godfrey Binder Professor of Engineering Science and Mechanics at Penn State. "Education is the key to understanding these areas."

However, when it comes to nanotechnology, Lakhtakia and his colleagues found that people in most segments of the economy are not paying much attention. Or, if they are aware of the field, the reactions and actions are overly enthusiastic, uninformed or alarmist.

Lakhtakia, working with Debashish Munshi, associate professor, management communications and Priya Kurian, senior lecturer, political science and public policy, University of Waikato, New Zealand, and Robert V. Bartlett, the Gund Professor of Liberal Arts, University of Vermont, looked at how technologists/scientists, business and industry leaders, government agencies, social science researchers, fiction writers, political activists, science journalists and writers and the general public view nanotechnology.

Scientists have, of course, picked up on nanotechnology. The word proliferates through the literature and is prominent in proposals for funding. In an article in the international journal Futures, published by Elsevier, tresearchers note that "entrepreneurial technoscientists have learned to align their research efforts with the latest terms in vogue." However, it is not always clear what that nanotechnology means.

"Carbon nanotubes, quantum dots, sculptured thin films, single-electron transistors, nanofluidic sensors and biomimetic substances are all examples of evolutionary nanotechnology," says Lakhtakia. "None has yet had any significant presence in the marketplace and these developments will not be real for many years."

Currently, normal incremental changes bring sizes down to 100 nanometers – and, therefore, qualify research as nanoscience. However, simply making particles smaller for cosmetics or reinforcing plastics with carbon nanofibers is not breakthrough science, although these advances are turning out to be lucrative.

Business leaders view nanotechnology with cautious optimism. Most investment aims to improve existing products by creating smaller components or smaller products with less interest in new materials or products. Investors are wary of a nanotechnology boom turning into a dot.com-like bust.

Government and quasi-official organizations find nanotechnology important. The U.S. established an Interagency Working Group on Nanotechnology in 1996 and in 2000 the National Nanotechnology Initiative began coordinating efforts in nanotechnology. The National Science Foundation conducted a workshop on the societal impacts of nanotechnology in 2000 and concluded that, while there were technological and economic benefits to come, the societal impacts down the road were unknown. They recommended including social scientists in the NNI.

Among social scientists, little work on nanotechnology exists. While some have begun to study the area, there is little published. Reports from government agencies, scientists and business interests form the basis of the little that does exist. Some social scientists find nanotechnology interesting and beneficial, but others equate nanotech with areas they found frightening such as genetic engineering or cloning. Currently no nanotechnology law exists and legal experts believe that current law is sufficient to handle future needs with modification.

Fiction writers have covered nanotechnology, both good and bad, for a long time. Novels like Crichton's "Prey" emphasize the negatives of nanotechnology, while others expand on the possibilities. These writers reflect the hopes and fears of the scientific community and feed the nascent research of the social scientists. A Canadian activist group produced a series of reports on the social implications of nanotechnology and urges caution in using nanotechnology. Greenpeace called for a moratorium on nanotechnology due to potential nanoparticle toxicity. Many anti-nanotechnology activists predict the creation of destructive, uncontrollable life forms from nanotechnology. However, some activists realize the potential good and suggest caution as the best approach to development.

Science writers and journalists report the scientific research as it comes into the literature. They also cover the reports evaluating nanotechnology, such as the Canadian reports on social implications. Science writers have not yet produced broad evaluations of the field, but have begun to evaluate the business aspects in the cautionary context of a dot.com bust.

"The paucity of debate and critical analysis on the implications of nanotechnology in the popular media is reflected in the general lack of public awareness of the implications of nanotechnology," according to the researchers.

The researchers find the general public only vaguely aware of nanotechnology. The public sees nanotechnology as having some benefits, but is concerned with how business and industry develop the field. In the U.S., the idea of science as a neutral endeavor creates a view of nanotechnology as good, providing untold opportunities. However, the majority is unaware of exactly what nanotechnology is and of the potential problems in its development.

"Schools must find a way to interweave science, engineering, liberal arts, literature and history so that emerging fields like nanotechnology, biotechnology and cognitive science can be understood and evaluated by the general public," Lakhtakia of Penn State says. "Lifelong learning is also necessary to keep up with the changes as they come along."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>