Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double sun sunset no longer science fiction

24.01.2007
During the last decade, the discovery of planets around stars other than the Sun has revealed a variety of kinds of planets, orbits, and systems, often very different to our Solar System.

One of the most interesting examples are those of stars accompanied not only by planets, but also by other stars, making double "Sun" sunsets, and sunrises, no longer science fiction. A research team from the University of Jena (Germany) has recently made interesting discoveries at Calar Alto by performing a systematic search for such systems.

Since the discovery in 1995 of the first extrasolar planet around a normal star (51 Pegasi), it has become evident that there exists an unexpected diversity of planetary systems, most of them very different to our Solar System. First, it was found that there are many massive planets placed extremely close to their parent stars: the so-called "hot Jupiters". This is very different from what we observe in the Solar System, where massive planets are located far away from the Sun, and this finding required a revision of the theories of planetary formation. Second, it was shown that the process of planetary formation is not restricted to single stars as our Sun: indeed, under certain circumstances, it is possible to form planets around binary stars, which are a much more dynamically complex environment than our own Solar System.

A binary star is a physical system formed by two stars circling around their common center of mass. There is a wide diversity of such couples, often formed by stars of similar mass, but there are also may examples of binary systems with components of very different masses. The Star and Planet Formation subgroup of the Astrophysical Institute of the University of Jena (AIU) has recently been looking hard into candidate systems that might allow the existence of planets surrounding binary stars. Their search, carried out by Ralph Neuhäuser and Markus Mugrauer, makes use of the sharpest possible images of these stars and their immediate surroundings in order to identify faint neighbors (that could be potentially associated with the system). To get images of extreme sharpness it is necessary to compensate the blurring effect of the atmosphere (which make stars twinkle) and this can be achieved thanks to adaptive optics, or other techniques such as speckle imaging, both available at Calar Alto. The potential companions detected this way are later studied in detail to confirm their true physical association to the planet-hosting star, by discarding the possibility that they are simple chance alignments of unrelated objects at different distances.

Infrared images of the gamma Cephei system obtained from Calar alto on September the 11th (left) and 12th (right) 2006. The bright, A component would be located at the center of both images, but it has been digitally subtracted to reveal the position of the faint, B component, marked with an arrow.

One of their recent findings refers to a quite bright star, gamma Cephei (gamma Cephei), a star with a planet (gamma Cephei Ab) with a minimum mass 1.7 times that of planet Jupiter and with a period of around 3 years. From previous spectroscopic studies this star is known to also have a low-mass stellar companion (gamma Cephei B) orbiting the brighter component. This team has now been able to get the first direct images of the secondary star which allow to significantly improve the determination of physical parameters of the gamma Cephei system. The observations were obtained both with the Japanese telescope Subaru (placed at Mauna Kea, Hawaii), and with the instrument Omega-Cass attached to the 3.5 m telescope of Calar Alto (Spain). The observations at Mauna Kea were obtained by Misato Fukagawa (Nagoya University) in June 2006, and at Calar Alto by Markus Mugrauer and Tobias Schmidt (both AIU Jena) in September 2006.

The two stars in the gamma Cephei system are separated by an average distance only 20 times the distance from the Earth to the Sun making this system one of the closest planet hosting binary systems presently known. It is composed of the central bright subgiant star gamma Cephei A, which is more massive than our Sun (1.4 solar masses), the secondary star gamma Cephei B which is smaller than half the mass of the Sun (0.4 solar masses) and a planetary companion, circling the primary star.

Imagine a "Sun" and a failed "Sun" sunset

Another outstanding discovery by the same team using Calar Alto telescopes, is that of the companion to the star HD 3651. HD 3651 is a nearby faint, red star, known to have a sub-Saturn-mass planet. This team discovered that the very faint companion is in fact a cool brown dwarf, the first brown dwarf directly imaged as companion to an exoplanet host star. Observations performed with the instrument Omega-Cass at the 3.5 m telescope of Calar Alto in September 2006, helped to demonstrate the link between HD 3651 and this small substellar object (now called HD 3651 B), and to determine its physical characteristics. The faint companion of the planet host star HD 3651 is one of the coolest brown dwarfs presently known (effective temperature ranging between 500o and 600o C).

The same research team has used several instruments and telescopes to find faint companions to planet host stars. In the course of their campaigns, they have found secondary objects with masses from 0.5 to 0.075 the mass of the Sun, in the substellar-stellar mass border. Two companions turned out to be white dwarf stars, an evolved kind of object whose existence in planet-harboring systems implies new restrictions to the theories that explain the formation of planets.

Science fiction needs to catch up!

Joao Alves | alfa
Further information:
http://www.caha.es

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>