Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water theory is watertight, researchers say

There may be tiny bubbles in the wine, but not at the interface between water and a waxy coating on glass, a new study shows.

The behavior of water when placed in contact with hydrophobic (water-repellent) surfaces, such as raincoats and freshly waxed cars, has puzzled scientists for a long time. According to a controversial theoretical prediction, water near a hydrophobic surface will pull away and leave a thin layer of depleted water at the surface – that is, water molecules at the interface will pack less tightly than usual.

Now, a team of researchers at the University of Illinois at Urbana-Champaign and Argonne National Laboratory has resolved the controversy. Using near-perfect hydrophobic surfaces and synchrotron X-ray measurement techniques, the researchers found the theoretical prediction to be correct. They report their findings in the Dec. 31 issue of the journal Physical Review Letters.

"Previous experiments have been interpreted sometimes in favor of a depletion layer, sometimes against, and sometimes as indicating intimate solid-water contact in places and 'nanobubbles' in others," said Steve Granick, a professor of materials science and engineering, chemistry and physics at Illinois.

"Part of our study was to help understand why there was so much disagreement in the scientific literature," said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory on campus and at the university's Beckman Institute for Advanced Science and Technology.

To study the nature of hydrophobicity, the researchers first prepared a nearly ideal hydrophobic surface – a self-assembled methyl-terminated octadecylsilane monolayer. Then they made synchrotron X-ray measurements of the interface between water and monolayer.

The measurements revealed a depletion layer, about one water molecule in thickness. The depletion layer was present with and without air dissolved in the water. Because no nanobubbles were seen, bubbles must not play a significant role in hydrophobicity, the researchers conclude.

The synchrotron X-ray data "unambiguously confirm the theoretical expectation that water, when it meets a planar hydrophobic surface, forms a depletion layer," the researchers write.

"We found that in a real system – more complicated that the theory assumes – the theory does capture the essence," Granick said. "The next time I see water beading on a raincoat, my vision of how the water molecules experience that raincoat is going to be different."

James E. Kloeppel | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>