Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water theory is watertight, researchers say

19.01.2007
There may be tiny bubbles in the wine, but not at the interface between water and a waxy coating on glass, a new study shows.

The behavior of water when placed in contact with hydrophobic (water-repellent) surfaces, such as raincoats and freshly waxed cars, has puzzled scientists for a long time. According to a controversial theoretical prediction, water near a hydrophobic surface will pull away and leave a thin layer of depleted water at the surface – that is, water molecules at the interface will pack less tightly than usual.

Now, a team of researchers at the University of Illinois at Urbana-Champaign and Argonne National Laboratory has resolved the controversy. Using near-perfect hydrophobic surfaces and synchrotron X-ray measurement techniques, the researchers found the theoretical prediction to be correct. They report their findings in the Dec. 31 issue of the journal Physical Review Letters.

"Previous experiments have been interpreted sometimes in favor of a depletion layer, sometimes against, and sometimes as indicating intimate solid-water contact in places and 'nanobubbles' in others," said Steve Granick, a professor of materials science and engineering, chemistry and physics at Illinois.

"Part of our study was to help understand why there was so much disagreement in the scientific literature," said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory on campus and at the university's Beckman Institute for Advanced Science and Technology.

To study the nature of hydrophobicity, the researchers first prepared a nearly ideal hydrophobic surface – a self-assembled methyl-terminated octadecylsilane monolayer. Then they made synchrotron X-ray measurements of the interface between water and monolayer.

The measurements revealed a depletion layer, about one water molecule in thickness. The depletion layer was present with and without air dissolved in the water. Because no nanobubbles were seen, bubbles must not play a significant role in hydrophobicity, the researchers conclude.

The synchrotron X-ray data "unambiguously confirm the theoretical expectation that water, when it meets a planar hydrophobic surface, forms a depletion layer," the researchers write.

"We found that in a real system – more complicated that the theory assumes – the theory does capture the essence," Granick said. "The next time I see water beading on a raincoat, my vision of how the water molecules experience that raincoat is going to be different."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>