Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The secret life of clouds...and other research

Clouds can be a headache for meteorologists preparing weather forecasts and for scientists trying to predict how climates will change. Clouds can trap heat from the Earth or reflect heat radiation from the sun back into space, changing the way the climate behaves.

By learning more about the microscopic structure and physics of clouds, scientists are now better able to predict how the climate will respond. This research has been carried out as part of a major programme, funded by the Natural Environment Research Council (NERC), to determine what impact ice clouds have on the Earth’s climate system.

For the first time the scientists have shown that, within larger clouds, there are layers of super-cooled water cloud at temperatures as low as –30°C. These layers are not currently represented in weather and climate prediction models, but they are an important factor in determining whether the heat radiation is reflected back or allowed to pass through the cloud.

Research also shows that within the thin and wispy cirrus clouds that form from ice crystals high in the atmosphere, there are various concentrations of crystal numbers and shapes within different ‘regions’ of each cloud.

Programme leader, Professor Tom Choularton from the University of Manchester, explains why this is important. “The regions with small numbers of large crystals are relatively transparent and allow light through, whereas areas with an abundance of very small crystals scatter the incoming light. These differences have a huge effect on the amount of sunlight actually reaching the ground.”

A research team based at Imperial College, London, has developed a new instrument to measure the radiative properties of both ice clouds and clear air. They designed it for use on scientific aircraft and headed for Darwin in Northern Australia to observe the far infrared (very long wavelength) radiative properties of the skies around deep convective tropical storm regions.

Professor Choularton says,” This important work is still underway. We aim to link these measurements with the information we now know about the size, number and shape of ice crystals in clouds. The results will help us to test how well the effects of these clouds are represented in climate prediction and weather forecasting models.”

This research is just some of the exciting atmospheric science being showcased at a conference in London on Tuesday 23 January. ‘Our Changing Atmosphere’ highlights the work from four major research programmes to increase our understanding of the chemistry and physics of the atmosphere, and to quantify the effect of greenhouse gases on climate and air quality. NERC has invested £20 million in the four programmes.

Marion O'Sullivan | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>