Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret life of clouds...and other research

19.01.2007
Clouds can be a headache for meteorologists preparing weather forecasts and for scientists trying to predict how climates will change. Clouds can trap heat from the Earth or reflect heat radiation from the sun back into space, changing the way the climate behaves.

By learning more about the microscopic structure and physics of clouds, scientists are now better able to predict how the climate will respond. This research has been carried out as part of a major programme, funded by the Natural Environment Research Council (NERC), to determine what impact ice clouds have on the Earth’s climate system.

For the first time the scientists have shown that, within larger clouds, there are layers of super-cooled water cloud at temperatures as low as –30°C. These layers are not currently represented in weather and climate prediction models, but they are an important factor in determining whether the heat radiation is reflected back or allowed to pass through the cloud.

Research also shows that within the thin and wispy cirrus clouds that form from ice crystals high in the atmosphere, there are various concentrations of crystal numbers and shapes within different ‘regions’ of each cloud.

Programme leader, Professor Tom Choularton from the University of Manchester, explains why this is important. “The regions with small numbers of large crystals are relatively transparent and allow light through, whereas areas with an abundance of very small crystals scatter the incoming light. These differences have a huge effect on the amount of sunlight actually reaching the ground.”

A research team based at Imperial College, London, has developed a new instrument to measure the radiative properties of both ice clouds and clear air. They designed it for use on scientific aircraft and headed for Darwin in Northern Australia to observe the far infrared (very long wavelength) radiative properties of the skies around deep convective tropical storm regions.

Professor Choularton says,” This important work is still underway. We aim to link these measurements with the information we now know about the size, number and shape of ice crystals in clouds. The results will help us to test how well the effects of these clouds are represented in climate prediction and weather forecasting models.”

This research is just some of the exciting atmospheric science being showcased at a conference in London on Tuesday 23 January. ‘Our Changing Atmosphere’ highlights the work from four major research programmes to increase our understanding of the chemistry and physics of the atmosphere, and to quantify the effect of greenhouse gases on climate and air quality. NERC has invested £20 million in the four programmes.

Marion O'Sullivan | alfa
Further information:
http://www.nerc.ac.uk
http://www.nerc.ac.uk/research/areas/atmospheric/events/meeting.asp

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>