Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret life of clouds...and other research

19.01.2007
Clouds can be a headache for meteorologists preparing weather forecasts and for scientists trying to predict how climates will change. Clouds can trap heat from the Earth or reflect heat radiation from the sun back into space, changing the way the climate behaves.

By learning more about the microscopic structure and physics of clouds, scientists are now better able to predict how the climate will respond. This research has been carried out as part of a major programme, funded by the Natural Environment Research Council (NERC), to determine what impact ice clouds have on the Earth’s climate system.

For the first time the scientists have shown that, within larger clouds, there are layers of super-cooled water cloud at temperatures as low as –30°C. These layers are not currently represented in weather and climate prediction models, but they are an important factor in determining whether the heat radiation is reflected back or allowed to pass through the cloud.

Research also shows that within the thin and wispy cirrus clouds that form from ice crystals high in the atmosphere, there are various concentrations of crystal numbers and shapes within different ‘regions’ of each cloud.

Programme leader, Professor Tom Choularton from the University of Manchester, explains why this is important. “The regions with small numbers of large crystals are relatively transparent and allow light through, whereas areas with an abundance of very small crystals scatter the incoming light. These differences have a huge effect on the amount of sunlight actually reaching the ground.”

A research team based at Imperial College, London, has developed a new instrument to measure the radiative properties of both ice clouds and clear air. They designed it for use on scientific aircraft and headed for Darwin in Northern Australia to observe the far infrared (very long wavelength) radiative properties of the skies around deep convective tropical storm regions.

Professor Choularton says,” This important work is still underway. We aim to link these measurements with the information we now know about the size, number and shape of ice crystals in clouds. The results will help us to test how well the effects of these clouds are represented in climate prediction and weather forecasting models.”

This research is just some of the exciting atmospheric science being showcased at a conference in London on Tuesday 23 January. ‘Our Changing Atmosphere’ highlights the work from four major research programmes to increase our understanding of the chemistry and physics of the atmosphere, and to quantify the effect of greenhouse gases on climate and air quality. NERC has invested £20 million in the four programmes.

Marion O'Sullivan | alfa
Further information:
http://www.nerc.ac.uk
http://www.nerc.ac.uk/research/areas/atmospheric/events/meeting.asp

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>