Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bright white beetle dazzles scientists

An obscure species of beetle could teach us how to produce brilliant white ultra-thin materials, according to a research team led by the University of Exeter.

The Cyphochilus beetle has a highly unusual brilliant white shell. New research by the University of Exeter and Imerys Minerals Ltd. and published in leading journal Science (19 January), reveals the secret to this beetle’s bizarre appearance.

The Cyphochilus beetle has evolved its brilliant whiteness using a unique surface structure. At one 200th of a millimetre thick, its scales are ten times thinner than a human hair. Industrial mineral coatings, such as those used on high quality paper, plastics and in some paints, would need to be twice as thick to be as white. According to ISO accredited measurements for whiteness and brightness, the beetle is much whiter and brighter than milk and the average human tooth, which are both considerably thicker.

‘This kind of brilliant whiteness from such a thin sample is rare in nature. As soon as I saw it, every instinct told me that the beetle was something very special,’ said Dr Pete Vukusic of the University of Exeter’s School of Physics. ‘In future, the paper we write on, the colour of our teeth and even the efficiency of the rapidly emerging new generation of white light sources will be significantly improved if technology can take and apply the design ideas we learn from this beetle.’

Colour in both nature and technology can be produced by pigmentation or by very regularly arranged layers or structures. Whiteness, however, is created through a random structure, which produces ‘scattering’ of all colours simultaneously. Using electron microscope imaging, Dr Vukusic studied the beetle’s body, head and legs and found them to be covered in long flat scales, which have highly random internal 3D structures. These irregular internal forms are the key to its uniquely effective light scattering. By balancing the size of the structures with the spacing between them, they scatter white light far more efficiently than the fibres in white paper or the enamel on teeth.

Native to South-east Asia, it is believed that the beetle’s whiteness has evolved to mimic local white fungi as a form of camouflage.

Biomimicry: Nature’s great designs

- In 2000, Californian scientists published research revealing how geckos scurry up walls and stick to ceilings. Their findings could help to develop a novel synthetic adhesive.

- In 2002, a German scientist showed how tiny bumps on the lotus leaf cause rain water to ball up and clean dirt from its surface. This microstructure has been an inspiration for paint and easy-clean furniture fibres.

- In 2005, Dr Pete Vukusic of the University of Exeter showed how butterflies give out fluorescent signals by absorbing and re-emitting ultra-violet light.

This technology has been in-place in nature for 30 million years, but scientists are just now developing high emission light emitting diodes (LEDs), which work in the same way. He also worked with cosmetics company L’Oréal to develop a pigment-free photonic make-up based on mimicking butterfly scales.

Sarah Hoyle | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>