Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright white beetle dazzles scientists

19.01.2007
An obscure species of beetle could teach us how to produce brilliant white ultra-thin materials, according to a research team led by the University of Exeter.

The Cyphochilus beetle has a highly unusual brilliant white shell. New research by the University of Exeter and Imerys Minerals Ltd. and published in leading journal Science (19 January), reveals the secret to this beetle’s bizarre appearance.

The Cyphochilus beetle has evolved its brilliant whiteness using a unique surface structure. At one 200th of a millimetre thick, its scales are ten times thinner than a human hair. Industrial mineral coatings, such as those used on high quality paper, plastics and in some paints, would need to be twice as thick to be as white. According to ISO accredited measurements for whiteness and brightness, the beetle is much whiter and brighter than milk and the average human tooth, which are both considerably thicker.

‘This kind of brilliant whiteness from such a thin sample is rare in nature. As soon as I saw it, every instinct told me that the beetle was something very special,’ said Dr Pete Vukusic of the University of Exeter’s School of Physics. ‘In future, the paper we write on, the colour of our teeth and even the efficiency of the rapidly emerging new generation of white light sources will be significantly improved if technology can take and apply the design ideas we learn from this beetle.’

Colour in both nature and technology can be produced by pigmentation or by very regularly arranged layers or structures. Whiteness, however, is created through a random structure, which produces ‘scattering’ of all colours simultaneously. Using electron microscope imaging, Dr Vukusic studied the beetle’s body, head and legs and found them to be covered in long flat scales, which have highly random internal 3D structures. These irregular internal forms are the key to its uniquely effective light scattering. By balancing the size of the structures with the spacing between them, they scatter white light far more efficiently than the fibres in white paper or the enamel on teeth.

Native to South-east Asia, it is believed that the beetle’s whiteness has evolved to mimic local white fungi as a form of camouflage.

Biomimicry: Nature’s great designs

- In 2000, Californian scientists published research revealing how geckos scurry up walls and stick to ceilings. Their findings could help to develop a novel synthetic adhesive.

- In 2002, a German scientist showed how tiny bumps on the lotus leaf cause rain water to ball up and clean dirt from its surface. This microstructure has been an inspiration for paint and easy-clean furniture fibres.

- In 2005, Dr Pete Vukusic of the University of Exeter showed how butterflies give out fluorescent signals by absorbing and re-emitting ultra-violet light.

This technology has been in-place in nature for 30 million years, but scientists are just now developing high emission light emitting diodes (LEDs), which work in the same way. He also worked with cosmetics company L’Oréal to develop a pigment-free photonic make-up based on mimicking butterfly scales.

Sarah Hoyle | alfa
Further information:
http://www.exeter.ac.uk
http://newton.ex.ac.uk/butterflies

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>