Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright white beetle dazzles scientists

19.01.2007
An obscure species of beetle could teach us how to produce brilliant white ultra-thin materials, according to a research team led by the University of Exeter.

The Cyphochilus beetle has a highly unusual brilliant white shell. New research by the University of Exeter and Imerys Minerals Ltd. and published in leading journal Science (19 January), reveals the secret to this beetle’s bizarre appearance.

The Cyphochilus beetle has evolved its brilliant whiteness using a unique surface structure. At one 200th of a millimetre thick, its scales are ten times thinner than a human hair. Industrial mineral coatings, such as those used on high quality paper, plastics and in some paints, would need to be twice as thick to be as white. According to ISO accredited measurements for whiteness and brightness, the beetle is much whiter and brighter than milk and the average human tooth, which are both considerably thicker.

‘This kind of brilliant whiteness from such a thin sample is rare in nature. As soon as I saw it, every instinct told me that the beetle was something very special,’ said Dr Pete Vukusic of the University of Exeter’s School of Physics. ‘In future, the paper we write on, the colour of our teeth and even the efficiency of the rapidly emerging new generation of white light sources will be significantly improved if technology can take and apply the design ideas we learn from this beetle.’

Colour in both nature and technology can be produced by pigmentation or by very regularly arranged layers or structures. Whiteness, however, is created through a random structure, which produces ‘scattering’ of all colours simultaneously. Using electron microscope imaging, Dr Vukusic studied the beetle’s body, head and legs and found them to be covered in long flat scales, which have highly random internal 3D structures. These irregular internal forms are the key to its uniquely effective light scattering. By balancing the size of the structures with the spacing between them, they scatter white light far more efficiently than the fibres in white paper or the enamel on teeth.

Native to South-east Asia, it is believed that the beetle’s whiteness has evolved to mimic local white fungi as a form of camouflage.

Biomimicry: Nature’s great designs

- In 2000, Californian scientists published research revealing how geckos scurry up walls and stick to ceilings. Their findings could help to develop a novel synthetic adhesive.

- In 2002, a German scientist showed how tiny bumps on the lotus leaf cause rain water to ball up and clean dirt from its surface. This microstructure has been an inspiration for paint and easy-clean furniture fibres.

- In 2005, Dr Pete Vukusic of the University of Exeter showed how butterflies give out fluorescent signals by absorbing and re-emitting ultra-violet light.

This technology has been in-place in nature for 30 million years, but scientists are just now developing high emission light emitting diodes (LEDs), which work in the same way. He also worked with cosmetics company L’Oréal to develop a pigment-free photonic make-up based on mimicking butterfly scales.

Sarah Hoyle | alfa
Further information:
http://www.exeter.ac.uk
http://newton.ex.ac.uk/butterflies

More articles from Physics and Astronomy:

nachricht New Method of Characterizing Graphene
30.05.2017 | Universität Basel

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>